
A Four Stack Processor

Bernd Paysan

25th April 2000

Abstract

This article presents an experimental architecture of a four stack/dual data move
CPU. Such a four stack machine was proposed in spring 1993 in the article thread
“Stack machines and RISC” in comp.arch to allow parallel stack processing. A
complete ISA, interrupt strategies and some sample code is presented.

1 Motivation

Superscalar processors exploit the inherent parallelism of a sequential code. However,
scheduling has to be done while executing. The instruction grouper has to avoid and
resolve data conflicts at runtime, although they are (almost) statically known at compile
time. Scoreboards, comparison areas, pipeline bypasses and history buffers (for speculative
execution) consume die area and time (at best, they increase latency). Multiported register
files (especially multiple write ports) increase complexity and therefore slow down register
access.

The goal of this work is to reduce possible collisions in a superscalar unit by separating write
pathes. Stack-like register files exploit the implicit addressing modes of stack machines to
decrease instruction length. Short instructions reduce memory bandwidth and improve
cache usage (longer programs fit into the same cache size). Procedure calls are cheap on
stack machines; making HLL and modern operating systems faster.

Arithmetic expressions execute naturally on stacks; although stack machines suffer much
more from inherent parallel, but sequential executed instructions than register machines, it
is assumed that most programs use only a small number of tight coupled parallel instruction
streams (up to four). It is assumed furthermore, that the results of these parallel instruc-
tions will be used by any of the following instruction, such that easy result forwarding is
required.

Because branch instructions are likely to occur more frequently in such a VLIW instruction
set, pipelining should be reduced as much as possible (by simplifying instruction decode);
and pipelined execution should be visible to the code generator where it can’t be avoided

1

(no stalls, no pipeline bubbles). It is proposed, that an implementation of the ISA has a
three stage pipeline: fetch, decode and execute. Thus speculative decode (aborted at the
end of the execution phase of the branch instruction) in both control flow branches allows
“zero cycle” branches.

Thanks to Piercarlo Grandi, who had the initial idea and to Kyle Hayes for discussing
many aspects of the design.

2 Implementation

The proposed machine uses four stacks cached in four LIFO latch files. Each stack has its
own ALU. The four stack locations from the top of stack may be accessed by any other
ALU (four read ports). The next four stack locations may only be accessed by the stack’s
ALU itself (one read port). The stack items below are (usually) unaddressable. This
allows to choose from 32 entries each cycle (each of the four stacks can choose one of eight
entries), and up to four recently computed results from any other ALU each. Each stack
spills automatically on overflows and refills on underflows.

In addition to the four ALUs, two memory units allow parallel loads and stores (found be
very useful in DSPs like the MC 56K). To avoid conflicts, one of the memory units reads
and writes to even stacks, the other to odd stacks (stack numbers from 0 to 3). Each
unit uses four register sets; each register set allows to form and modify one address. The
stack paradigm isn’t used in these units, because memory accesses are expected to be more
global.

I chose some architectural features good for (integer) digital signal processing, because
these applications become more and more mainstream (“multimedia”: JPEG, MPEG and
music/voice compression). So each memory register set can be used as indexed array, as
ring buffer (FIFO or array with bound check), as stack (LIFO) and (for FFT) as bit reverse
addressed ring buffer.

DSP algorithms require a fast multiply, shift and add unit. As this unit would be the critical
path of the instruction set, it is implemented as a two cycle, visible pipelined instruction.
Only two multiplication units are provided, one for the lower half of the stacks, the other
for the upper half. Each stack half can issue one multiplication per cycle and finish it in
the next cycle. Splitting the multiplication instruction into two halfs allows to use many
modifications like multiply, add and round. I hope aggressive carry look ahead will allow
to implement a fast enough multiply unit.

As ALU speed limits the overall CPU speed (superpipelining is not possible), I expect a
clock rate of about 100 MHz using current 0.6µ HCMOS or 0.8µ BiCMOS processes.

2

3 Instruction Set Architecture

The machine is a 32 bit machine. Instruction word length is 64 bit.

Registers per stack:

s0 (TOS), s1 (NOS), . . . , s7; sr (status), sp (stack pointer); if preceded by a number from
0-3: select other stack.

Registers per address unit:

R0–R3; N0–N3; L0–L3; F0–F3; each Rn has a triple of N, L, F associated (N is distance,
L is limit, F are usage flags).

I’ll give you the inner loop of a complex fraction FFT as example of the instruction encoding
(lines beginning with ;; are comment lines). pick reads the source operand and pushes on
the current stack. mul starts a multiplication source ∗ TOS and writes the intermediate
result into one of two multiplier latches, depending if stack is 0 or 1 resp. 2 or 3. mul@
and variations read these latches and thus push the result on the current stack. TOS is
always an implicit operand and destination, thus not encoded in the instruction.

;; st0: st1: st2: st3: even data odd data

;; -- -- n --

index! do L$loop

;; fr hi fi hr

pick 3s0 mul 0s0 pick 1s0 mul 0s0 ld 0&2: R1 0 #

;; fr hr -- fi hi --

mul 2s1 mul@ mul s1 mul@

;; fr gi 2:hifr/2 fi gr 2:hrfr/2

asr mulr@+ asr -mulr@+ 0 # ld 1&3: R1 +N

;; fr gi/2 (hifr+fihr)/2=:qi

;; fi gr/2 (hrfr-hifi)/2=:qr

add 1s0 subr 0s0 add 3s0 subr 2s0 st 0&2: R1 N+ st 1&3: R1 N+

;; fr gi/2-qi gi/2+qi fi gr/2-qr gr/2+qr

L$loop:

Two things have to be explained: First, there is a load delay of one cycle. So the load
“ld” instruction takes two cycle. Data is available at the begin of the second instruction
after the load. This allows to split address computation and bus/cache operation into two
separate cycles. Certainly wait states must be inserted in case of a cache miss. There is
no such delay for stores “st”. The store takes the result of the current cycle. The numbers

3

like 0&2: select the destination stack(s), two numbers mean two consecutive loads. +N
adds the index Nn to the address register to form the address, N+ modifies the register Rn

after the address computation.

The implicit addressing of the multiplier result: unlike other operations, the multiply issue
instruction leaves its intermediate results in the pipeline latches of the multiplier unit, not
on the stack. So the multiply result fetch instruction needs not to operate on the same
stack as the issue instruction. This allows to move the multiplier’s result from one stack
to the other (only inside one stack half) and eases scheduling.

The do loop statement is a Fortran-like hardware do loop without any per loop overhead.

The resulting code is quite good, compared with specialized DSPs as the MC 56K: Using
two pipelined 2 cycle multipliers, each FFT step requires 4 cycles. The DSP MC 56K has
one 2 cycle multiplier (not pipelined) and finishes one FFT step after 12 cycles (min).

FFT has a very high inherent parallelism — a 1024 point FFT may be split into 512
parallel elementary FFT transformations; so FFT is a typical peak rate benchmark; even
for SIMD machines. However, this coding doesn’t unroll the loop — it doesn’t need that
aggressive coding.

I’ll give a much worse example with very little inherent parallelism: a walk through a list
to find the list’s end.

;; list 0 list -- --

last: nop pin s1 nop nop ld 0: s0 NEXT #

nop pick 0s0 nop nop br 0 ?0<> last

;; rubbish last 0 -- --

This loop speculatively loads the next list entry before checking for NIL; it would take one
extra instruction to prevent this. Compiler idioms (like while(*b.next) b=*b.next;)
could help to code this instructions (because I don’t know of any compiler that inserts
speculative loads). A slight modification of the loop allows to count the list with no
overhead. However, the NIL load should not result in an exception.

It’s even possible to search a keyed element in a list without any additional overhead:

;; list 0 key <>key --

search: nop pin s0 sub s1 nop ld 0&2: s0 NEXT #

nop pick 0s0 nop nop br 0&2 ?0<> search

;; rubbish find/0 key rub. --

br 1 :0= notfound

4

4 Programmer’s Model

Register file:

Stack 0 Stack 1 Stack 2 Stack 3
0s0 1s0 2s0 3s0
0s1 1s1 2s1 3s1
0s2 1s2 2s2 3s2
0s3 1s3 2s3 3s3
s4 s4 s4 s4
s5 s5 s5 s5
s6 s6 s6 s6
s7 s7 s7 s7
sr sr sr sr
sp sp sp sp

ip, index, loops, loope

Bits in sr:

global state︷ ︸︸ ︷
STAD0000 IIIIIIII

per stack state︷ ︸︸ ︷
CCCCCCCC 0UMMX0OC

S supervisor state
T trace mode
A address mode for instructions (0=32, 1=64 bits)
D activates external debugger

I interrupt disabled

C shift count (signed)

U shift mode: 0=unsigned, 1=signed
M rounding mode: 0=to nearest, 1=to zero, 2=to ∞, 3=to −∞
X conditional execution (0=execute, 1=don’t execute)
O overflow
C carry
0 reserved and must be set to 0

The lower half of sr is local to each stack, the upper is global for all stacks.

Memory register file:
Even stack unit

R0 N0 L0 F0
R1 N1 L1 F1
R2 N2 L2 F2
R3 N3 L3 F3

Odd stack unit
R0 N0 L0 F0
R1 N1 L1 F1
R2 N2 L2 F2
R3 N3 L3 F3

Flags in Fn: 00000000 00000000 00MMMMMM 000SBROZ

5

Z scale displacement (N, s0, constant offset) by size
O byte order (0=big, 1=little endian)
R bit reverse addition
B create bound crossing trap
S stack usage: negate N on writes
M mask bits, if the operation crosses the limit, the lower n bits are masked out

INSTRUCTION CACHE

128 BIT I-BUS 128 BIT I-BUS

PREFETCH QUEUE BRANCH TARGET QUEUE

FPADDFPLATCH FPLATCH

FPMULFPLATCH FPLATCH

ALU1ALU0 ALU2 ALU3 DATA0 DATA1
ALU0 ALU1 ALU2 ALU3 DATA0 DATA1

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

FILL/
SPILL

STACK 1

STACK 3

FILL/
SPILL

STACK 2

STACK 0

DATA CACHE

D-BUSD-BUS

128-BIT 128-BIT

INSTRUCTION DECODE

DSP UNIT

DSP UNIT

X
B

A
RUNIT 0

MEMORY
N F

N F

N F

N FR3

R2

R1

R0

UNIT 1
MEMORY

N F

N F

N F

N FR3

R2

R1

R0L

L

L

L

L

L

L

L

Figure 1: Data pathes

5 Instruction Format

To reduce the article’s length, I introduce a short instruction notation, that is (in EBNF):

[〈n〉“*”] { [〈static bits〉] [〈instruction name〉] [“〈”〈table〉“〉”]〈part size〉 }
∗
, “=”〈explanation〉

All constants are in hex.

General instruction encoding (big endian):

6

4 ∗ 〈stack code〉10, 2 ∗ 〈data move〉10, 2 ∗ 〈move/modify〉1, 02= continue
4 ∗ 〈stack code〉10, 4 ∗ (〈copy/pop〉1, 〈flag〉4), 02, 12= conditional setup
4 ∗ 〈stack code〉10, 〈or/and〉1, 〈stack map〉4, 〈copy/pop〉1, 〈flag〉4, 〈offset〉11, 〈likelihood〉1,
22= br/do
3 ∗ 〈stack code〉10, 01, 〈call/jump〉1, 〈address〉29, 01, 32= call/jump relative
3 ∗ 〈stack code〉10, 11, 〈call/jump〉1, 〈address〉29, 01, 32= call/jump absolute
〈address〉61, 11, 32= far call

stack code:

01, 〈mode〉2, 〈group〉2, 〈extend〉5
extend depending on mode and group:

mode

group
0 1 2 3

0 or T1 add T1 addc T1 mul T1
1 and T1 sub T1 subc T1 umul T1
2 xor T1 subr T1 subcr T1 pass T1
3 T2 T3 T4 T5

T1:

02, 〈#n〉3= small immediate constants #n:
0, −1, $7FFFFFFF, $80000000, c0=1, c1=2, c2=4, c3=$100000 (c0 to c3 are user defined
constants, c3 is for fp)
12, 01, 〈index〉2= s〈index〉p; stack index 0p-3p and discard 1

12, 11, 〈index-4〉2= s〈index〉; stack index 4-7
11, 〈stack〉2, 〈index〉2= 〈stack〉s〈index〉
T2:

02, 〈index〉3= pin s〈index〉; move TOS to s〈index〉 and drop it.
else
pick T1= push selected stack item, coded as T1.

Abbreviations: pin s0 =̂ drop, pin s1 =̂ nip, pick s0 =̂ dup, pick s1 =̂ over, pick s1p =̂
swap.

The multiplier issue doesn’t push a result back, so it consumes the top of stack, too. “pass”
allows to bypass the multiplier to make explicit use of the barrel shifter and double adder.

Rounded mul@ pushes one stack item (the upper half), unrounded pushes two items.
The high order half of the used value is the TOS (big endian). Rounding is done after

1An ALU op will use TOS as first operand, the specified stack item as second operand and shift all
stack items below the indexed operand. The result is written back to TOS, so never discarded. E.g. add
s1p gives (.. a b c −− .. a b+c) and is the traditional stack add, adding and consuming the two topmost
stack entries, and pushing the result back to the stack. s#p used with pick is a stack rotation; pick s1p
reads stack item one, discards it and pushes it as a new TOS, thus swaps the two topmost stack entries
(the effect of the FORTH word SWAP). pick s2p is equal to the FORTH word ROT.

7

+

x

C

ROUND

<<

M

Figure 2: Multiply, shift and add unit

accumulation. Simply round fractional multiplication will divide the result by two; that’s
desired in block floating point operations as the FFT above.

T3:

01, 〈add〉1, 〈negate〉1, 〈round〉1, 〈shift〉1= [−]mul[r][<]@[+]:
add : 0: no; 1: add dword from TOS:NOS
negate : 0: no; 1: yes
round : 0: no; 1: round by mode (IEEE round)
shift : 0: no; 1: shift by count

11, 〈flag〉4= compute flag

flag:
0-7: t 0= 0< ov u< u> < >

8-F: f 0<> 0>= no u>= u<= >= <=

The compare flags need a sub or subr before. All flag computation replace the TOS with
the flag.

T4:

〈group〉2, 〈item〉3=

group

item
0 1 2 3 4 5 6 7

0 asr lsr ror rorc asl lsl rol rolc
1 ff1 popc lob loh extb exth hib hih
2 sp@ loops@ loope@ ip@ sr@ cm@ index@ flatch@
3 sp! loops! loope! ip! sr! cm! index! —

ff1 pushes the amount of zeros preceeding the most significant one of TOS. popc pushes
the amount of bits set in TOS. lob shifts the most significant byte (unsigned) to the least
significant byte, loh does so for the half word. extb and exth sign extend a byte/half
word. hib and hih shift a byte/half word to the most significant part of TOS (fractional

8

representation). The ∼@ (read “∼-fetch”) instructions read special registers and push the
result to the current stack, the ∼! (read “∼-store”) store TOS to the special registers and
pop it.

There is no integer division, as it can be easily emulated with the fast MAC, a table lookup
and a Newton or Goldschmidt iteration. For division by constants, a multiply (with the
“reziprocal” value) and a shift is usually enough.

T5:

01, 〈floating point〉4: see below
11, 〈bit manipulation, pixel, . . . 〉4:

group

item
0 1 2 3

0 bfu bfs — —
1 cc@ cc! — —
2 px4 px8 pp4 pp8
3 — — — —

The bit manipulation operations (bfu and bfs) take a “bit field descriptor” from the top
of stack. This isn’t really an exact descriptor of the bit field, but allows to form many
possible bit field operations with very few instructions. The bitfield descriptor consists of
three bytes, from least significant to most: r, n, m.

The bit field operation rotates the NOS r bits to the left, creates a n bit mask and rotates
the mask m bits to the left. Then it ands the mask with the rotated NOS and leaves that
in TOS, dropping NOS. bfs extends the sign bit (the MSB of the bit field). By using a
mask rotation number m > n and r = 0 parts of a bit field can be deleted using bfu, so bfu
can do extract from a bit field (unsigned), clear in a bit field and create a bit field form a
value that was perhaps in another bit field before. bfs can be used to do signed extraction.

cc@ and cc! load and store carry count in the DSP unit. Carry count is a 16 bit sign
extended number, that counts carries (+1) and borrows (−1).

The pixel extract and pixel pack operations convert a double number on the stack from
4/8 bits per pixel to 8/16 bits per pixel and vice versa. Each wider pixel uses the pixel in
the TOS value as more significant half and the NOS value as less significant half. The px4
and pp4 operations can be used for BCD arithmetics, too.

Mode and count (cm) are parts of the state register of each stack.

Flags affected: As each operation leaves its result in the TOS, flags are set according to
the TOS value and to the operation extra results (carry and overflow). There is no true
nop that doesn’t affect flags (nop is equal to “or #0”). However, only add/sub or shift
instructions affect carry flag, so or #0 leaves the flag as it was after an add/sub. To clear
carry, use add #0, to set use sub #0.

Unary operations: not =̂ xor #−1; neg =̂ subr #0, inc =̂ sub #−1, dec =̂ add #−1.

9

Immediate numbers:

22, 〈const〉8= 8 bit constant sign extended pushed on stack.
32, 〈const〉8= 8 bit constant: shift TOS by 8 bit and insert constant into lower byte.

This allows to push four full 32 bit constants in four cycles. Most constants are shorter and
an 8 bit signed constant is pushed in one cycle. E.g. the instruction sequence %10 $12,
%11 $34, %11 $56, %11 $78 for one stack pushes the constant $12345678 onto the stack
(→ $12→ $1234→ $123456→ $12345678). It is not wise to use this for many constants,
because parallel data moves allow four 32 bit constants to be pushed simultaneous without
any delay. It’s better to set up a data pointer to a constant field (per procedure) using ip
and an immediate offset.

Data move operations:

If 〈move/modify〉1 = 1:

〈r̄/w〉1, 〈stack half〉1, 〈dual move〉1, 〈size〉2, 〈mode〉3, 〈reg〉2= ld/st

else:

11, 〈stack half〉1, 〈code〉3, 〈mode2〉3, 〈reg〉2= ua/set/get/cache control & MMU/io/. . .
01, 〈shift〉1, 〈constant〉8= 8 bit sign extended, offset for the other side’s data move op.

If 〈shift〉=1, the previous constant is shifted by 8 bits and the immediate constant is
inserted into these lower 8 bits.

size: 0: byte “B”, 1: half “H” , 2: word, 3: two words “2” or “F”
code: 0: add address, 1: subtract address, 2: get reg, 3: set reg, 4: cache & MMU control,
5: IO, 6–7: to be specified.
mode syntax address Rn becomes comment

0 Rn Rn+imm Rn indirect
1 Rn +N Rn+Nn+imm Rn indexed
2 Rn N+ Rn+imm Rn+Nn modify after
3 Rn +N+ Rn+Nn+imm Rn+Nn modify before
4 s0b s0+imm Rn stack indirect b.e., reg=0;

ipb ip+imm Rn ip relative b.e., reg=1;
s0l s0+imm Rn stack indirect l.e., reg=2;
ipl ip+imm Rn ip relative l.e., reg=3

5 Rn +s0 Rn+s0+imm Rn stack indexed
6 Rn s0+ Rn+imm Rn+s0 stack modify after
7 Rn +s0+ Rn+s0+imm Rn+s0 stack modify before

The TOS for modes 4-7 is read at the begin of executing the instruction from the specified
stack. However, the index is not consumed by the load/store.

Boundary crossing is detected if the outcoming sum of register and offset (either from the
Nn register or from s0) is greater or equal the Ln limit register. In this case, the sum is
replaced with Rn, where the M lower bits are deleted (mask part of Fn).

10

mode2: for update address: 〈modifier〉1: 0=Nn (only if 〈stack〉), 1=s0, 〈destination reg〉2.
reg+modifier+immediate offset gives destination reg. Syntax Rdn= Rn [+|−(N s0)].

Cache Control:

The instructions ccheck, cclr, cstore, cflush, cload, calloc and cxlock control the cache
(mode2 from 0–3, the stack half bit is used to distinguish between cclr, cstore, cflush (bit
clear) and cload, calloc, cxlock (bit set)). All these accesses use the address in Rn to
select one cache line. The address part that is used to address the cache line set in usual
accesses is used here, too. The lower bits select one line of the set. The higher bits are
compared with the cache line’s address; a mask count M specifies the lower bits of them
not to compare. It is ensured, that a walk with constant offset through one page’s address
range will select all cache lines. Bit 0-1 specify which cache to check: data, instruction,
higher stack’s and lower stack’s cache (even/odd is selected by the operation slot).

Example: an implementation may have 4K pages and 32 byte cache lines in a four way set
associative cache. Thus, the lower 12 bit select the cache line. Therefrom the lower 5 bits
select way and cache: 0 is way 0, 8 is way 1, $10 is way 2 and $18 is way 3, all in data
cache.

ccheck returns the result of the check at the begin of the second instruction after its issue.
Thus it has a delay slot as any other cache access, too. The result contains the status bits
(MOESI for modified, owned, exclusive, shared, invalid) of the cache line, a flag whether
the compare matched or failed and the number of unprocessed entries in the global write
buffer. This helps to flush the cache without long interrupt latency.

A cache flush does not ensure that the cache is empty after the flush, but it ensures that
cache and memory before the flush are consistent afterwards, thus all modified lines are
written out and any valid data in the cache contains the same values as the corresponding
memory. When interrupts are disabled, the cache is really empty, except those parts needed
to run the cache flush loop.

MMU:

The 4stack’s MMU is kept simple, but allows everything a modern OS needs. The MMU
provides save kernel entries, protects pages form user space and kernel space from each other
(if wanted), and defines different cache coherence requirements. Hardware implements only
translation lookaside buffers (TLBs), the page table walk has to be done in software. This
allows to use different page table formats, or to emulate a CPU that uses it’s own virtual
memory.

Each TLB contains a virtual address for four pages, beginning form a page number di-
vidable by four. This allows to keep more pages in the MMU with the same amount of
transistors, assuming a good locality among the used pages. There is a MMU for code
pages, and a MMU for data pages.

The TLB update instruction takes a virtual/physical address pair. It selects the correct
TLB slot by using either the lower bits of the virtual address (if not zero), or by searching
an appropriate slot using the virtual address itself.

11

The lower part of a physical page address consists of two parts: access rights and page
properties. Access rights are rwxrwx for user and supervisor (thus 6 bits). Properties
consist of 3 bits for the system (cache coherence protocol, setmode) and 3 bits free for
application purposes, which could be typically be used for access stamps (read, modified,
executed), but these bits are not processed by the MMU.

The format thus is
ac su usr

ccs rwx rwx rwx

The setmode bit changes the execution mode when executing an instruction in this page,
and the processor is in a mode not allowed to execute instructions.

The cache coherence protocol defineds four different types of pages: uncached, consistently
updated, coherent cached and stale cached. This affects writes, and in case of “totally
uncached”, reads, too. Writes to uncached pages are merged, but when they leave the
write buffers, they are not stored in the cache. It is usually not recommended to use this
mode, except you have a memory mapped device that takes rather large junks (up to 64
bytes) at once, e.g. a SCI device.

A page that is marked to be “consistently updated” is cached, but modifications are written
out early (after they leave the inner write buffer, thus there are never dirty cache lines for
this page). A possible application may be a frame buffer, but it is more recommended to
flush frame buffer caches in the vertical blank instead of using this sort of write–through
cache.

A “coherent cached” page uses a standard multiprocessor protocol for updated cache lines,
thus writes to shared or unallocated cache lines generate a message on the bus. A “stale
cached” page doesn’t generate these messages, it assumes that these pages are local (in
fact, all reads are marked “with intent to modify”, so each other processor that holds this
line has to invalidate it). Be careful when migrating processes that use “stale cached”
pages! Cache lines that are completely generated by this processes may contain different
(stale) contents in other CPUs.

Pages can be considered as empty, if none of the rwxrwx bits for supervisor and user are
set. However, it is up to the TLB fault handler to convert (and validate!) page table
entries.

I/O Control:

The operations out, outd, ins, ioq, inb, inh, in and ind control I/O ports. The 4stack
processor has an implementation dependent number of I/O read and write buffers. I/O
accesses are not cacheable and not translated by the memory management unit; even if
they go to memory addresses, and not to special port addresses. All I/O accesses are
performed strictly sequential in an I/O queue. The access use the address in Rn plus the
immediate constant scaled by 8. Each I/O read is a 64 bit read, each write is a 64 bit write
to the corresponding address. On a 128 bit bus, the lowest valid bit in the address selects
appropriate bus half.

12

The in start operation ins returns a input latch register number. The io query operation
ioq returns true, if the passed register number is filled, false otherwise. An inb, inh, in or
ind operation reads the port value and frees the latch register. The immediate offset allows
to select the appropriate byte/half word/word out of the double word read. I/O accesses
will cause a privilege violation exception when not processed in supervisor mode.

For get and set reg: 0=Rn, 1=Nn, 2=Ln, 3=Fn. The values 4-7 for mode are the same for
64 bit addresses (getd and setd).

Data operations either could use one stack or a dual operations for two stacks (controlled
by the dual bit in the instruction). To indicate this, a different syntax for the stack location
is used (e.g. 2&0: instead of 2:).

Dual operations place the low address half on the specified stack, the address+size half on
the other stack. E.g. 2&0: as destination of the even stack data move unit means: The
top half is pushed on stack 2, the lower half on stack 0; the stack bit contains 1.

All accesses should be size aligned. Double accesses can’t be indexed with an immediate
constant. Single accesses are always indexed with a constant, because the data move nop
contains the index constant for the other operation.

Loads shall not be immediately followed by register fetches to the same stack, because the
data unit uses one data path per stack and won’t be able to push two values from two
sources simultaneous.

Instruction control:

Stack 3 is used as instruction control stack. Calls push the return address on stack 3,
return uses stack 3 to jump back with ip!. ip! changes the following instruction’s next
instruction address, thus the next instruction is executed before the indirect jump has an
affect on the control flow (delay slot). Indirect calls have to use ip@ on stack 3 to save the
return address. loops! and loope! have this delay slot, too. It takes another instruction
until the fetch unit recognizes the changes.

Conditional branches read the flags of the specified stacks computed in the current instruc-
tion, and add the sign extended 11 bit offset to the IP of the next instruction to get the
new address. If the 〈copy/pop〉-bit is true, the value is popped from the stack (condition
prefix “?”), otherwise it remains (prefix “:”). The jump is performed, if all (and/or bit=1)
or at least one (and/or bit=0) specified value mets the condition. If only one stack is
specified, the and/or bit should be 0.

If no stack is selected as flag input and the combination mode is “or”, the branch instruction
is interpreted as setup for a loop. The flag and the copy/pop bit should be zero. A “do”
initializes a loop by storing IP as loop start, IP+offset (sign extended) as loop end. The
loop counter has to be initialized with index!. There is no need to unroll loops more than
necessary to fill all instruction slots.

Loops are performed until the loop counter decrements to −1. Both pushing and restoring
surrounding loops must be done with index@, loops@ and loope@ and the corresponding

13

∼!s. The instruction fetch unit compares each new IP with loope, and if they are equal, it
continues fetching at loops. This is not true for branch targets, because they are computed
by the speculative fetcher, thus a branch to loope will leave the loop. A return to loope,
however, will continue looping.

All conditional branches have a “likelihood” bit. This bit gives a hint to branch prediction
logic, whether the branch will be taken (bit = 1), or not.

6 Conditional execution

Some simple algorithm don’t use four integer units, and are conditional, too. However,
even those can be executed in parallel with the aid of conditional execution of each per
stack operation. I’ll give a Z-buffer drawing algorithm as example (only the inner loop,
drawing a horizontal line is given):

xxx xxx xxx xxx ldh R1 :0&2 ldh R1 :1&3

xxx xxx xxx xxx do loop

;c dz z’ zr c dz z’ zr c dz z’ zr c dz z’ zr

sub s1 sub s1 sub s1 sub s1 ?u< ?u< ?u< ?u<

;c dz z’ c dz z’ c dz z’ c dz z’

pick s2 pick s2 pick s2 pick s2 st 0&2: R2 N+ st 1&3: R2 N+

dup dup dup dup sth 0&2: R1 N+ sth 1&3: R1 N+

nop nop nop nop :t :t :t :t

;c dz z c dz z c dz z c dz z

add s1 add s1 add s1 add s1 ldh 0&2: R1 ldh 1&3: R1

nop nop nop nop

loop:

To explain: The C source of this could be:

unsigned short *zbuffer;

color *screen;

color col;

unsigned short z,dz;

/* loop body */

for (...)

{

if(z<*zbuffer) /* sub s1 ?u< */

{

screen=col; / pick s2 st 0&2: R2 N+ */

zbuffer=z; / dup sth 0&2: R1 N+ */

14

}

screen++; zbuffer++; /* included above */

z+=dz; /* add s1 */

}

Thus all instructions execute conditionally, except the instruction to set and reset the con-
dition. The ?〈flag〉 instruction takes the actual computed value from stack and deactivates
the ALUs if false, the :〈flag〉 copies the actual computed value. :f reverts the activity of
an ALU and is used for else parts. :t reactivates all ALUs. Once on an inactive ALU, all
?/:〈flag〉 won’t change the state to active, nor change the stack’s state, except :t and :f.

Parallel memory operations will perform their address updates, but won’t perform stores,
if the stack is deactivated, will read 0, if s0 is used as address update operator and won’t
push loaded values (but they will load, because they can’t estimate the flag’s state two
cycles later).

With an possible clock rate of 100 MHz, we can draw 66 million Z-buffered pixel per
second (peak rate, certainly). This would be enough to animate real time 3D pictures in
HDTV quality. Shaded polygons would reduce the rate to 50 million pixels (with Gourand
shading), replacing the last nop line by

pick s2 pick s2 pick s2 pick s2

add s4 add s4 add s4 add s4 ldh R1 :0&2 ldh R1 :1&3

pin s3 pin s3 pin s3 pin s3

and removing the ldh’s in the previous instruction line.

The shading algorithm should care about color saturation, or a pixel add and saturate
instruction is required. To compare: the MC88110 includes Z–buffering operations (pixel
compare) which allows to draw two pixels in an average of 5.5 instructions, nearly 3 cycles
per pixel then:

repl_both

st.d Colors,Framep,-8

repl_none

ld.d Zbufr,Zbufp,0

padd newZ,Zinc

add Framep,8

add Zbufp,8

pcmp CCR,newZ,Zbufr

bb1 4,CCR,repl_both

bb1 5,CCR,repl_none

bb1 6,CCR,repl_first

bb1 7,CCR,repl_secnd

...

15

Conditional execution can also be used to execute the end of an unrolled loop (1 to 4
iterations).

7 Floating point

〈floating point〉

0 1 2 3
0 fadd fsub fmul fnmul
4 faddadd faddsub fmuladd fmulsub
8 fi2f fni2f fadd@ fmul@
C fs2d fd2s fxtract fiscale

As integer multiply, floating point instructions are divided into two parts and visibly pipe-
lined: into add and normalize, and multiply and normalize. Integer stacks are used as
floating point stacks, and except fs2d, fd2s, fiscale, fxtract, fi2f and fni2f, all sources and
results are 64 bit IEEE FP numbers. Each stack provides only one source number, and
there is only one adder and one multiplier (to save space), which, however, can operate in
parallel. There are bypasses for the adder (both from multiplier and adder) to allow a 3
cycle multiply and add, and an every cycle accumulation (the last a bit like i860).

Each source can be negated. Both adder and multiplier have two input latches, loaded by
fadd, fsub, fmul and fnmul (negated mul). Odd stacks access one latch, even stacks the
other; thus two fadds shall not be coded on two even stacks. The latches hold their input,
even if only one fmul/fadd instruction is executed.

fiscale scales a FP exponent by an explicit integer argument, thus fscale(m ∗ 2e, i) =
m ∗ 2e+i. The integer argument is in s0, the floating point number in s1 and s2. fxtract (
f −− f n) inverts fiscale and produces a floating point number between 1 and 2 and the
exponent integer.

fi2f and fni2f use subtract to convert integer to floating point and back. They change the
MSB of the input integer, fi2f pushes $43300000, fni2f $C3300000, moves the result to
the adder latch and starts an addition. Thus the difference of two converted integers is
the difference of the two corresponding floating point values. Using 0 as second converted
integer allows simple conversion. As the adder latch stays, block conversion does not need
to setup the “zero” latch every cycle.

There is no fp division and square root (although these both are applyable in transistor
logic) to keep the complexity in a reasonable range. Division and square root can be
implemented using multiply and addition and this implementation helps to avoid problems
with saving the FPU’s state in some few cycles. Especially both add and multiply don’t
have special exceptions, as division by zero or square root of a negative number.

Examples: Vector multiplication:

16

nop nop nop nop ldf 0: R1 N+ ldf 1: R1 N+

nop nop nop nop ldf 0: R1 N+ ldf 1: R1 N+

nop nop nop nop ldf 0: R1 N+ ldf 1: R1 N+

fmul fmul nop #n ldf 0: R1 N+ ldf 1: R1 N+

fmul fmul fmuladd index! do loop

fmul fmul fmuladd faddadd ldf 0: R1 N+ ldf 1: R1 N+

loop:

fmul fmul fmuladd faddadd

fmul fmul fmuladd faddadd

nop nop fmuladd faddadd

nop nop nop fadd@ #0 stf 3: R2 N+

The pipeline in this example is, beginning with the data load, 5 cycles deep, but it needs
at least 10 cycles to complete, because one load slot is occupied by the do instruction.
Keeping one vector in cache, a memory interface with 128 bit bus size and 50 MHz will
keep the pipeline filled.

Linpack (λx+ Ai):

;-- lambda dest --

nop nop sp@ nop ldf 0: R1 4 #

pick 2s0 nop drop nop ldf 0: R1 N+

nop nop sp! nop ldf 0: R1 N+

fmul fmul nop #n ldf 0: R1 N+

fmul fmuladd fadd index! do loop

fmul fmuladd fadd fadd@ ldf 0: R1 +N+ stf 3: R1 N+

loop:

nop fmuladd fadd fadd@ 0 # stf 3: R1 N+

drop nop pick 0s0 fadd@ 0 # stf 3: R1 N+

nop nop sp! nop

I use a stack as a “FIFO” — to get the second source in :-). This could be dangerous,
sometimes. . . As source (Ai) and destination (likely in place: Ai) needs 128 bits per cycle
(the cached vector x maybe not), a two cycle per step loop without this trick may be
enough. . .

Block integer conversion (only inner loop):

nop #0 nop #n

fi2d fni2d nop index! do loop

fi2d fadd@ nop nop ld 0: R1 N+ stf 1: R1 N+

loop:

fi2d fadd@ nop nop 0 # stf 1: R1 N+

nop fadd@ nop nop 0 # stf 1: R1 N+

17

Division can use Newton–Raphson’s Iteration x′ = 2x − ax2 with x0 = −0.43a + 1.36
(converts after four iterations and would take 29 cycles):

c0: .fd -.43

c1: .fd 1.36

; a -- -- --

fdiv:

fxtract pick 0s0 loope@ loops@

drop and #min pick 0s0 nop .ip.f# c0 ldf 3: ipb

fabs nop neg nop .ip.f# c1 ldf 1: ipb

fmul nop nop fmul

fmuladd fadd flatch@ 3 #

index@ fadd@ nop index! do

nop fmul fmul nop

fmul@ nop flatch@ flatch@

fmul nop nop f2*

fmulsub nop nop fadd

nop fadd@ nop nop

.loop

index! or s2p pass loops!

nop pick 2s0 drop ret

nop fiscale loope!

; -- 1/a -- --

A better way to calculate a/b is Goldschmidt’s algorithm [1], because it makes better
use of the independent multiplier and adder. Instead of taking 5 cycles per interation,
Goldschmidt’s algorithm takes only 3. A lookup table for the initial estimation improves
both algorithms, and the latter then is able to divide two floating point numbers in 13 (1024
value table) or 16 (32 value table) cycles.

A variation of Goldschmidt’s algorithm can be applied for sqare root (or reciprocal sqare
root), taking 5 cycles per iteration and giving result after 22 (17 for larger table) cycles.

Abbreviations:

fabs=and #$7FFFFFFF
fneg=xor #$80000000
f2∗=add c3
f2/=sub c3

8 Interrupts

The CPU has two states: normal program state and interrupt state. In interrupt state,
the CPU reads four instructions out of the interrupt table (indexed by the interrupt in

18

service) and executes them. No other interrupt service is done until the interrupt code
ends or forms a long interrupt. A long interrupt is formed by a jump in the interrupt code.
All states have to be saved in the interrupt code and restored manually:

Sample long interrupt:

sr@ ip@ sr@ sr@ stop@ stop@

mul@ sr@ mul@ ip@

flatch@ flatch@ flatch@ flatch@

index@ loops@ loope@ jump longint

longint:

; perform some action, using do, mul, fadd and fmul

index! loops! loope! nop

fadd fadd fmul fmul

pass sr! pass ip! restart restart

sr! ip! sr! sr!

Each interrupt sets a bit in the interrupt mask and disables all other interrupts from this
source until this bit is restored. The 8 interrupt mask bits in sr are global, thus 8 extern
interrupts are distinguished. While in interrupt mode, the S bit is set, allowing to execute
privileged instructions. Only interrupts and exceptions set the S bit, once cleared, sr! only
affects the lower half of the real sr, and stores the top half in a special user status register,
where only the trace–bit has an effect in user mode.

The indirect jump delay slot (after ip!) requires to fetch two instruction pointers, therefore
the first invocation of ip@ in interrupt mode has a different meaning: it fetches the address
of the second instruction, thus if the most recently executed instruction contained an ip!,
it fetches this address. Because the corresponding ip! has to be the last instruction, it
uses bit 2 to store the X flag of the status register, and clears the X flag of the status
register. This allows to execute sr! on this stack one cycle before, thus the instruction
space addressing occurs in the correct mode, too.

Interrupt mode uses a different set of memory registers. An interrupt stops the second stage
of a load. The stopped address and the loading mode can be obtained with the opcode
stop@ and restarted with restart. This is only necessary in long interrupts (however, it is
obligatory then).

9 Exceptions

Besides interrupts, which are indeterministic and asynchronous, there are exceptions be-
cause of faulty instructions; e. g. a protection violation. The exception strategy is either
to emulate these instructions, to restart them or to abort the program.

19

Number Reason for exception Unit that causes the fault
0–F General exceptions Interrupts and instruction faults

0 Reset Reset pin low, double fault
1 Trace Trace bit set
2 Instruction Fault Invalid instruction
3 Privilege Violation Decoder
4 FPU exception FPU
5 reserved
6 Instruction TLB Miss Prefetcher
7 Instruction Memory Protection Fault Prefetcher

8–F Interrupts Interrupt pin n

Number Reason for exception Unit that causes the fault
10–1F Memory first stage faults Memory unit

10 no exception
11 Boundary crossing odd half Memory unit
12 Misaligned Access odd half Memory unit
13 Reserved
14 Boundary crossing even half Memory unit
...

1A Misaligned Access both halfs Memory unit

Number Reason for exception Unit that causes the fault
20–2F Memory second stage faults PMMU

20 no exception
21 TLB Miss odd half PMMU
22 Memory Protection Violation PMMU
24 TLB Miss even half PMMU
...

2A MPV both halfs PMMU

Number Reason for exception Unit that causes the fault
30–3F Stack TLB Miss Stack PMMU

31 Stack 3 TLB Miss Stack 3’s PMMU
32 Stack 2 TLB Miss Stack 2’s PMMU
...

3F All Stack’s TLB Miss All Stack’s PMMU

The four stack PMMUs can cause four independent faults simultaneous, so theses faults
are combined into a bit vector to form an exception vector.

Memory unit or PMMU may cause 2 independent faults simultaneous. These faults are
combined to form an exception vector. Each exception vector must handle both faults.
Only conflicting fault sources on the same memory unit will be sorted by priority. The

20

priority ranks from TLB miss (highest) to misaligned access (lowest). There is no pos-
siblility for a memory protection violation to arise when a TLB miss had occured, and
the misaligned memory access can be caught, wenn the TLB miss handler restarts the
operation.

For some cases it is wise to serialize the errors; e. g. the OS may only handle only one
outstanding page request. But the software TLB lookup may be able to access two page
table entries at once, so serialization is only necessary, if both pages where found non–
present.

The misaligned access fault does not occur on implementations with misaligned access
supported except if an access crosses a page boundary and causes a TLB miss. The ld2nd
in the exception causing memory unit will then cause an TLB miss fault and the restart
will correctly load the misaligned value.

There is no guaranteed order between non–simultaneous faults, except that more severe
faults may completely hide other faults (eg. reset will hide any of the other faults caused
before). Interrupts are usually served first.

Exceptions and interrupts use the same call mechanism: the first four instructions are
fetched out of the exception table and the memory register set switches to the interrupt
memory register set. These four instructions will be executed and are guaranteed not to
be interrupted. If they cause an exception, the CPU state is lost, so be carefully! If your
code isn’t exception–free, form a long exception by calling the dangerous code part.

The exception table has the fixed memory location of the first 2048 bytes of phyiscal
memory (addresses 0–$800). If your OS needs relocatible fault vectors, emulate them in
the real exception code segment by using long exceptions and indirect calling (you can use
one of the exception memory registers to point at the fault vector table).

10 Implementation Hints

This section will give some hints for a high performant implementation of the described
processor. It addresses stack register file, floating point unit, pipelining and prefetching.

10.1 Stack Register File

Stack registers are one of the parts of the critical path. Therefore a carefully design has to
be made. With pushes and pops stack registers changes their names or have to be spilled
or refilled. There are a maximum of 4 pushs or pops in one cycle (pass and st2 or mul@
and ld2’s result in the same cycle). As the four topmost elements are preferred (the other
stacks have access to them), they must be kept in a four-ported register file. These four
read ports are addressed by the four stack units and thus allow access without collisions.

21

Each element must have an additional r/w port to the spill/fill buffer. To get around
wire–crossing, each stack element has one connection to one of four rows in the spill/fill
buffer. So register renaming is used to compute the correct physical address in the register
file from the stack element number.

To write up to four result values in one cycle to the four topmost stack elements, or to fill
up to four values from the spill/fill buffer, each of the four per stack registers must have
one individual write port and a crossbar network to select the correct input for this cell.
The top of stack serves as ALU input latch, too, so a write to the designated TOS must
be forwarded to the ALU.

The actually computed TOS (and NOS for double word stores) have to be forwarded to
the data unit and to the branch logic (the branch logic requires only computed flags). An
ALU operation that consumes its input has to compute the zero flag for the resulting TOS.

The stack roll operations (pick s0p to pick s3p) requires a special capability of the stack
register file: to move a selected number of elements to the element below. The store TOS
network handles the picked element, which is passed through the ALU and therefore not
lost. Thus the 4 element register file has to be organized like a sort of shift register in the
orthogonal direction.

The spill/fill buffer has to provide a high data throughput, too. The topmost four elements
may be accessed by the corresponding stack ALU (both read and write access) and certainly
by the filled/spilled elements. The read row address is always the same as a fill request
to that column; but write row addresses differ by one (and there is the possibility that
both ports are used for a write access!). Each row must certainly have a connection to the
corresponding cache. It is a good advice to write lines late (before they are overwritten in
the circular buffer) and to fill them early (once they are free).

If each stack uses an own stack cache, no more than those four buffer rows are necessary,
but if the data cache is used, some additional buffer rows should be good.

10.2 Stack Address Translation

All interrupts and exceptions use the same stack spill pointer as user code. This seems
to cause trouble when the reason for the exception was the propagation of a stack into a
protected or not available page. Therefore each stack needs to have at least two precalcu-
lated (and thus valid) page translations: the current page (certainly) and either the next
or the previous page. The next page isn’t critical, because it’s needed for fills. Thus if a
fill cases a page fault, subsequent spills go to a valid page. The previous page is critical,
thus it must be available, if the stack lacks a certain amount of free space. A good choise
is to get the correct address if half of the page is filled. The next page’s physical address
is only necessary, if the stack is almost empty, thus if the next fill would cross the page
boundary.

22

...

...

...

...

...

...

...

...
xA
xB
xC

x9

2
3

1
0 4

6
5

7

2
3

1
6
5

7
x2
x3

x1

x0

x2
x3
x4

x6

x8

xA
xB
xC

x1 x5x9

x7

x8
x7
x6
x5

x40 4TOS

TOS

Push x0

Figure 3: Stack register and stack buffer

10.3 Pipelining

High parallel instruction execution results in short basic blocks. While the cost of one con-
ditional jump can be eliminated with speculative fetching, decoding (and maybe executing),
the costs of consecutive conditional jumps increase exponentially, if the first condition isn’t
resolved for quite a long time.

The frequency of conditional jumps in usual programs is benchmarked at about 4 to 6
operations per jump, thus only one or two instructions on this processor. Even if conditional
execution lengthens basic blocks in some important cases, conditional jumps are frequently
and would destroy a constant pipeline stream in a long pipeline.

Therefore a short, three stage pipeline (fetch, decode, execute) must be a design goal. The
fetch stage could be decoupled, thus prefetch sequential code as fast as the cache bandwidth
is and wait, if the prefetch buffer is full. This saves power, as the cache and the instruction
MMU are idle for some time. The following description uses a coupled fetch stage, because
this is simpler to understand. If necessary, each stage is divided in two phases, the rising
and falling clock edge.

Fetch: access the cache with the next instruction address and, if a MMU is present,
computes the physical page address. On the second port, access the cache with the
speculative next instruction address.

Compare the physical page address with the cache tag and select the correct cache
line. For each cache way find out, if the instruction changes the control flow (bit
62 set) and compute the following instruction address. Forward the computed next
instruction address to the speculative fetcher.

[Note: if a dual–ported i–cache and the parallel target address computation is too
expensive, it is worth thinking to interleave normal and speculative fetching. This

23

will require a clock doubling and a speculation hit will give one half major cycle
delay. Computing the branch target address then can be done in the first half of the
decode stage.]

Decode: fill in nops for each unaddressed instruction unit. [Compute the branch target
address, if not already done.]

Compute stack position to register number translations. Select data pathes for all
read accesses. These data pathes will contain valid data at the beginning of the
execute phase (plus an additional latch setup delay). Select the active units and
forward the ALU opcodes. Compute the spill pathes.

Execute: start computation. Compute and select the write and refill pathes. All latches
take only new data on rising clock edges. Compute the new renumbering of the stack
elements. Compute memory address and access the data cache with the memory
address of the previous cycle. Start MMU translation for data accesses.

Write results. The results need to be stable just before the rising clock edge. Compare
physical page addresses and data cache tags. Select the correct cache element and
forward it to the open write path (on reads). Store values from the store buffer to
the accessed cache line (on writes). Move values to be stored to the store buffer (on
rising clock edge).

[Note: if a dual ported data cache is too expensive, and if it is possible to reduce the
address computation to a half major cycle, the two accesses may overlap, one using
the second half of the execute phase to access cache and MMU, the other using the
first half of the next cycle.]

10.4 Floating Point Unit

The floating point ISA uses a simplified model: compute and normalize. The real word
looks different: For floating point multiplication, you need to setup the multiplier array
(mT

1 ∗m2); compute the diagonal sum of this array with carry save adding (3 to 2 adder or
7 to 3 adder); reduce the two results (sum and carries) with carry lookahead to one, round
and shift left by one if the MSB is not set. The exponent sum is computed in parallel and
incremented in the last step if the MSB was set.

For floating point adding, you have to compute the difference of the exponents and form
the two’s complements of the smaller, if sign bits are different. Then shift the smaller by
the exponent difference to the right and add the inputs with carry lookahead. Count the
leading zeros (leading ones if the result is negative; then build the two’s complement of the
result, too) and subtract the number from the bigger exponent. Shift the result into the
appropriate position and round.

Using these four stages, the fmuladd and the faddadd instructions seems to have great
problems: The fmuladd forwards a unfinished sum (a sum of two inputs) and the faddadd

24

forwards an unnormalized sum. Both is less critical than expected. The fmuladd can
compute the sum while the shift amount is computed, the remaining 1 bit of possible
difference has to be added to the input field length. The faddadd normalization is not
necessary, as proper accuracy is maintained without it. Every step at most only one bit
drops to the left; a wider internal field is sufficient to keep the result accurate. The one bit
accuracy lost per step can be corrected in the first stage of the floating point add, before
doing the shift. A clear MSB results in a shift by one to the left.

11 To be Done

Other potential useful instructions have to be found and specified. A supervisor/user model
and appropriate protect strategies (if any) have to be found and specified.

A gcc port for the simulator. . . However, a machine description is likely not enough; register
allocation on stack machines is completely different (see Phil Koopman’s work); and a
modified graph coloring algorithm for code scheduling is required.

References

[1] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers; San Mareo, CA, 1990. Appendix A: Computer
Arithmetic by David Goldberg.

25

