
b16 — A Forth Processor in an FPGA

Bernd Paysan

February 2, 2003

Abstract

This article presents architecture and implementation of the
b16 stack processor. This processor is inspired by Chuck

Moore’s newest Forth processors. The minimalistic design
fits into small FPGAs and ASICs and is ideally suited for
applications that need both control and calculations. The
synthesizible implementation uses Verilog.

Introduction

Minimalistic CPUs can be used in many designs. A state
machine often is too complicated and too difficult to de-
velop, when there are more than a few states. A program
with subroutines can perform a lot more complex tasks,
and is easier to develop at the same time. Also, ROM- and
RAM blocks occupy much less place on silicon than“random
logic”. That’s also valid for FPGAs, where “block RAM” is
— in contrast to logic elements — plenty.
The architecture is inspired by the c18 from Chuck

Moore [1]. The exact instruction mix is different. I traded
2* and 2/ against division step and Forth-typical logic oper-
ations; these two instructions can be implemented as short
macro. Also, this architecture is byte-addressed.
The original concept (which was synthesizible, and could

execute a small sample program) was written in an after-
noon. The current version is somewhat faster, and really
runs on a Altera Flex10K30E on a FPGA evaluation board
from Hans Eckes. Size and speed of the processor can be
evaluated.

Flex10K30E About 600 LCs, the unit for logic cells in
Altera1. The logic to interface with the eval board
needs another 100 LCs. The slowest model runs at up
to 25MHz.

Xfab 0.6µ ∼1mm2 with 8 stack elements, that’s a technol-
ogy with only 2 metal layers.

TSMC 0.5µ <0.4mm2 with 8 stack elements, this tech-
nology has 3 metal layers. With a somewhat optimized
ALU the 5V library reaches 100MHz.

The complete development (excluding board layout and test
synthesis for ASIC processes) was done with free or zero
cost tools. Icarus Verilog in the current version is quite

1A logic cell can compute a logic function with four inputs and one

output, or a full-adder, and also contains a flip-flop.

useful for projects in this order of magnitude, and Quartus
II Web Edition is a big chunk to download, but doesn’t
cost anything (downside: Windows NT, the version for real
operating system costs real money).
A word about Verilog: Verilog is a C-like language, but

tailored for the purpose to simulate logic, and to write syn-
thesizible code. Variables are bits and bit vectors, and as-
signments are typically non-blocking, i.e. on assignments
first all right sides are computed, and the left sides are mod-
ified afterwards. Also, Verilog has events, like changing of
values or clock edges, and blocks can wait on them.

1 Architectural Overview

The core components are

• An ALU

• A data stack with top and next of stack (T and N) as
inputs for the ALU

• A return stack, where the top of return stack (R) can
be used as address

• An instruction pointer P

• An address register A

• An address latch addr, to address external memory

• An instruction latch I

Figure 1 shows a block diagram.

1.1 Register

In addition to the user-visible latches there are control
latches for external RAM (rd and wr), stack pointers (sp
and rp), a carry c and the flag incby, by which addr is
incremented.

1

b16 — A Forth Processor in an FPGA Bernd Paysan 2 INSTRUCTION SET

ALU

NOS

Stack Return−Stack

A

P

R

RAM/ROM

 Instruction Word Address Latch

TOS

Figure 1: Block Diagram

Name Function

T Top of Stack
N Next of Stack
I Instruction Bundle
P Program Counter
A Address Register
addr Address Latch
state Processor State
sp Stack Pointer
rp Return Stack Pointer
c Carry Flag

incby Increment Address by byte/word

〈register declarations〉≡
reg rd;

reg [1:0] wr;

reg [sdep-1:0] sp;

reg [rdep-1:0] rp;

reg ‘L T, N, I, P, A, addr;

reg [2:0] state;

reg c;

reg incby;

reg intack;

2 Instruction Set

There are 32 different instructions. Since several instruc-
tions fit into a 16 bit word, we call the bits to store the
packed instructions in an instruction word “slot”, and the
instruction word itself “bundle”. The arrangement here is
1,5,5,5, i.e. the first slot is only one bit large (the more
significant bits are filled with 0), and the others all 5 bits.

The operations in one instruction word are executed one
after the other. Each instruction takes one cycle, memory
operation (including instruction fetch) need another cycle.
Which instruction is to be executed is stored in the variable
state.
The instruction set is divided into four groups: jumps,

ALU, memory, and stack. Table 1 shows an overview over
the instruction set.
Jumps use the rest of the instruction word as target ad-

dress (except ret). The lower bits of the instruction pointer
P are replaced, there’s nothing added. For instructions in
the last slot, no address remains, so they use T (TOS) as
target.

〈instruction selection〉≡
// instruction and branch target selection

reg [4:0] inst;

reg ‘L jmp;

always @(state or I)

case(state[1:0])

2’b00: inst <= { 4’b0000, I[15] };

2’b01: inst <= I[14:10];

2’b10: inst <= I[9:5];

2’b11: inst <= I[4:0];

endcase // casez(state)

always @(state or I or P or T)

case(state[1:0])

2’b00: jmp <= { I[14:0], 1’b0 };

2’b01: jmp <= { P[15:11], I[9:0], 1’b0 };

2’b10: jmp <= { P[15:6], I[4:0], 1’b0 };

2’b11: jmp <= { T[15:1], 1’b0 };

endcase // casez(state)

The instructions themselves are executed depending on
inst:

〈instructions〉≡
casez(inst)

〈control flow〉
〈ALU operations〉
〈load/store〉
〈stack operations〉

endcase // case(inst)

2.1 Jumps

In detail, jumps are performed as follows: the target ad-
dress is stored in the address latch addr, which addresses
memory, not in the P register. The register P will be set to
the incremented value of addr, after the instruction fetch
cycle. Apart from call, jmp and ret there are conditional
jumps, which test for 0 and carry. The lowest bit of the
return stack is used to save the carry flag across calls. Con-
ditional instructions don’t consume the tested value, which
is different from Forth.
To make it easier to understand, I also define the effect

of an instruction in a pseudo language:

2

b16 — A Forth Processor in an FPGA Bernd Paysan 2 INSTRUCTION SET

0 1 2 3 4 5 6 7 Comment
0 nop call jmp ret jz jnz jc jnc

exec goto ret gz gnz gc gnc for slot 3
8 xor com and or + +c ∗+ /–
10 A!+ A@+ R@+ lit Ac!+ Ac@+ Rc@+ litc

A! A@ R@ lit Ac! Ac@ Rc@ litc for slot 1
18 nip drop over dup >r >a r> a

Table 1: Instruction Set

nop (—)

call (— r:P) P← jmp; c← 0

jmp (—) P← jmp

ret (r:a —) P← a ∧ $FFFE; c← a ∧ 1

jz (n — n) if(n = 0)P← jmp

jnz (n — n) if(n 6= 0)P← jmp

jc (—) if(c) P← jmp

jnc (—) if(c = 0)P← jmp

〈control flow〉≡
5’b00001: begin

rp <= rpdec;

addr <= jmp;

c <= 1’b0;

if(state == 3’b011) ‘DROP;

end // case: 5’b00001

5’b00010: begin

addr <= jmp;

if(state == 3’b011) ‘DROP;

end

5’b00011: begin

{ c, addr } <= { R[0], R[l-1:1], 1’b0 };

rp <= rpinc;

end // case: 5’b01111

5’b001??: begin

if((inst[1] ? c : zero) ^ inst[0])

addr <= jmp;

if(state == 3’b011) ‘DROP;

end

2.2 ALU Operations

The ALU instructions use the ALU, which computes a result
res and a carry bit from T and N. The instruction com is
an exception, since it only inverts T — that doesn’t require
an ALU.
The two instructions *+ (multiplication step) and /- (di-

vision step) shift the result into the A register and carry
bit. *+ adds N to T, when the carry bit is set, and shifts
the result one step right.

/- also adds N to T, but also tests, if there is an overflow,
or if the old carry was set. The result is shifted one to the
left.
Ordinary ALU instructions just write the result of the

ALU into T and c, and reload N.

xor (a b — r) r ← a⊕ b

com (a — r) r ← a⊕ $FFFF, c← 1

and (a b — r) r ← a ∧ b

or (a b — r) r ← a ∨ b

+ (a b — r) c, r ← a+ b

+c (a b — r) c, r ← a+ b+ c

∗+ (a b — a r) if(c) cn, r ← a + b else cn, r ← 0, b;
r,A, c← cn, r,A

/– (a b — a r) cn, rn ← a + b + 1; if(c ∨ cn) r ← rn;
c, r,A← r,A, c ∨ cn

〈ALU operations〉≡
5’b01001: { c, T } <= { 1’b1, ~T };

5’b01110: { T, A, c } <=

{ c ? { carry, res } : { 1’b0, T }, A };

5’b01111: { c, T, A } <=

{ (c | carry) ? res : T, A, (c | carry) };

5’b01???: begin

c <= carry;

{ sp, T, N } <= { spinc, res, toN };

end // case: 5’b01???

2.3 Memory Instructions

Chuck Moore doesn’t use the TOS as address any more,
but has introduced the A register. When you want to copy
memory areas, you need a second address register, that’s
what he uses the top of return stack R for. Since P has to
be incremented after each instruction fetch (to point to the
next instruction), the address logic must have auto incre-
ment. This will also be used for other accesses.
Memory instructions which use the first slot, and don’t

index over P, don’t increment the pointer; that’s to realize
read-modify-write instructions like +!. Write access is only
possible via A, the two other pointers can only be used for
read access.

3

b16 — A Forth Processor in an FPGA Bernd Paysan 2 INSTRUCTION SET

A!+ (n —) mem[A]← n; A← A+ 2

A@+ (— n) n← mem[A]; A← A+ 2

R@+ (— n) n← mem[R]; R← R+ 2

lit (— n) n← mem[P]; P← P + 2

Ac!+ (c —) mem.b[A]← c; A← A+ 1

Ac@+ (— c) c← mem.b[A]; A← A+ 1

Rc@+ (— c) c← mem.b[R]; R← R+ 1

litc (— c) c← mem.b[P]; P← P + 1

〈address handling〉≡
wire ‘L toaddr, incaddr, toR, R;

wire tos2r;

assign toaddr = inst[1] ? (inst[0] ? P : R) : A;

assign incaddr =

{ addr[l-1:1] + (incby | addr[0]),

~(incby | addr[0]) };

assign tos2r = inst == 5’b11100;

assign toR = state[2] ? incaddr :

(tos2r ? T : { P[15:1], c });

Memory access can’t just be done word wise, but also
byte wise. Therefore two write lines exist. For byte wise
store the lower byte of T is copied to the higher one.

〈load/store〉≡
5’b10000: begin

addr <= toaddr;

wr <= 2’b11;

end

5’b10100: begin

addr <= toaddr;

wr <= { ~toaddr[0], toaddr[0] };

T <= { T[7:0], T[7:0] };

end

5’b10???: begin

addr <= toaddr;

rd <= 1’b1;

end

Memory accesses need an extra cycle. Here the result of
the memory access is handled.

〈load-store〉≡
if(show) begin

〈debug〉
end

state <= nextstate;

〈pointer increment〉
rd <= 1’b0;

wr <= 2’b0;

if(|state[1:0]) begin

〈store afterwork〉
end else begin

〈ifetch〉
end

〈next〉

There’s a special case for the instruction fetch (the NEXT
of the machine): when the current instruction is a literal,
we must use incaddr instead of P.

〈next〉≡
if(nextstate == 3’b100) begin

{ addr, rd } <= { &inst[1:0] ?

incaddr : P, 1’b1 };

end // if (nextstate == 3’b100)

〈debug〉≡
$write("%b[%b] T=%b%x:%x[%x], ",

inst, state, c, T, N, sp);

$write("P=%x, I=%x, A=%x, R=%x[%x], res=%b%x\n",

P, I, A, R, rp, carry, res);

After the access is completed, the result for a load has to
be pushed on the stack, or into the instruction register; for
stores, the TOS is to be dropped.

〈store afterwork〉≡
if(rd)

if(incby)

{ sp, T, N } <= { spdec, data, T };

else

{ sp, T, N } <= { spdec, 8’h00,

addr[0] ? data[7:0] : data[l-1:8], T };

if(|wr)

‘DROP;

incby <= 1’b1;

Furthermore, the incremented address may go back to the
pointer.

〈pointer increment〉≡
casez({ state[1:0], inst[1:0] })

4’b00??: P <= !intreq ? incaddr : addr;

4’b1?0?: A <= incaddr;

// 4’b1?10: R <= incaddr;

4’b??11: P <= incaddr;

endcase // casez({ state[1:0], inst[1:0] })

To shortcut a nop in the first instruction, there’s some
special logic. That’s the second part of NEXT.

〈ifetch〉≡
intack <= intreq;

if(intreq)

I <= { 8’h81, intvec }; // call $200+intvec*2

else

I <= data;

if(!intreq & !data[15]) state[1:0] <= 2’b01;

Here, we also handle interrupts. Interrupts are accepted
at instruction fetch. Instead of incrementing P, we load
a call to the interrupt vector (addresses from $200) into
the instruction register. The interrupt routine just has to
save A (if needed), and has to balance the stack on return.
Since three instructions can be executed without interrupt,
there’s no interrupt disable flag internally, only an external
interrupt unit might do that. The last three instructions of
such an interrupt routine then would be a! >a ret.

4

b16 — A Forth Processor in an FPGA Bernd Paysan 3 EXAMPLES

2.4 Stack Instructions

Stack instructions change the stack pointer and move values
into and out of latches. With the 8 used stack operations,
one notes that swap is missing. Instead, there’s nip. The
reason is a possible implementation option: it’s possible to
omit N, and fetch this value directly out of the stack RAM.
This consumes more time, but saves space.
Also, Chuck Moore claims, that you don’t need swap—

if you don’t have it, you help out with other stack operation,
and there’s nothing to do, there’s still >a >r a r>.

nip (a b — b)

drop (a —)

over (a b — a b a)

dup (a — a a)

>r (a — r:a)

>a (a —) A← a

r> (r:a — a)

a (— a) a← A

〈stack operations〉≡
5’b11000: { sp, N } <= { spinc, toN };

5’b11001: ‘DROP;

5’b11010: { sp, T, N } <= { spdec, N, T };

5’b11011: { sp, N } <= { spdec, T };

5’b11100: begin

rp <= rpdec; ‘DROP;

end // case: 5’b11100

5’b11101: begin

A <= T; ‘DROP;

end // case: 5’b11101

5’b11110: begin

{ sp, T, N } <= { spdec, R, T };

rp <= rpinc;

end // case: 5’b11110

5’b11111: { sp, T, N } <= { spdec, A, T };

If you don’t want to live without swap, you can replace
the implementation of nip in the first line by:

〈swap〉≡
5’b11000: { T, N } <= { N, T };

3 Examples

A few examples show, how to program this processor. Mul-
tiplication works through the A register. There’s one extra
step necessary, since each bit first has to be shifted into the
carry register. Since call clears carry, we don’t have to do
that here.

〈mul〉≡
: mul (u1 u2 - ud)

>A 0 #

*+ *+ *+ *+ *+ *+ *+ *+ *+

*+ *+ *+ *+ *+ *+ *+ *+

>r drop a r> ;

Division needs an extra step, too. Here, we need a real
swap, but since there is none, we first use over and accept
that we have to use one extra stack item. Other than with
mul we here need to clear the carry after com. And finally,
we have to divide by two and shift in the carry.

〈div〉≡
: div (ud udiv - uqout umod)

com >r >r >a r> r> over 0 # +

/- /- /- /- /- /- /- /- /-

/- /- /- /- /- /- /- /-

nip nip a >r -cIF *+ r> ;

THEN 0 # + *+ $8000 # + r> ;

The next example is even more complicated, since I em-
ulate a serial interface. At 10MHz, each bit takes 87 clock
cycles, to get a 115200 baud fast serial line. We add a sec-
ond stop bit, to allow the other side to resynchronize, when
the next bit arrives.

〈serial line〉≡
: send-rest (c - c’) *+

: wait-bit

1 # $FFF9 # BEGIN over + cUNTIL drop drop ;

: send-bit (c - c’)

nop \ delay at start

: send-bit-fast (c - c’)

$FFFE # >a dup 1 # and

IF drop $0001 # a@ or a!+ send-rest ;

THEN drop $FFFE # a@ and a!+ send-rest ;

: emit (c -) \ 8N1, 115200 baud

>r 06 # send-bit r>

send-bit-fast send-bit send-bit send-bit

send-bit send-bit send-bit send-bit

drop send-bit-fast send-bit drop ;

Like in ColorForth, ; is just an EXIT, and : is used as
label. If there’s a call before ;, this is converted to a jump.
This saves return stack entries, time, and code space.

5

b16 — A Forth Processor in an FPGA Bernd Paysan 4 THE REST OF THE IMPLEMENTATION

4 The Rest of the Implementation

First the implementation file with comment and modules.

〈b16.v〉≡
/*

* b16 core: 16 bits,

* inspired by c18 core from Chuck Moore

*

〈inst-comment〉
*/

‘define L [l-1:0]

‘define DROP { sp, T, N } <= { spinc, N, toN }

‘timescale 1ns / 1ns

〈ALU 〉
〈Stack〉
〈cpu〉

〈inst-comment〉≡
* Instruction set:

* 1, 5, 5, 5 bits

* 0 1 2 3 4 5 6 7

* 0: nop call jmp ret jz jnz jc jnc

* /3 exec goto ret gz gnz gc gnc

* 8: xor com and or + +c *+ /-

* 10: A!+ A@+ R@+ lit Ac!+ Ac@+ Rc@+ litc

* /1 A! A@ R@ lit Ac! Ac@ Rc@ litc

* 18: nip drop over dup >r >a r> a

4.1 Top Level

The CPU consists of several parts, which are all imple-
mented in the same Verilog module.

〈cpu〉≡
module cpu(clk, reset, addr, rd, wr, data, T,

intreq, intack, intvec);

〈port declarations〉
〈register declarations〉
〈instruction selection〉
〈ALU instantiation〉
〈address handling〉
〈stack pushs〉
〈stack instantiation〉
〈state changes〉

always @(posedge clk or negedge reset)

〈register updates〉

endmodule // cpu

First, Verilog needs port declarations, so that it can now
what’s input and output. The parameter are used to con-
figure other word sizes and stack depths.

〈port declarations〉≡
parameter show=0, l=16, sdep=3, rdep=3;

input clk, reset;

output ‘L addr;

output rd;

output [1:0] wr;

input ‘L data;

output ‘L T;

input intreq;

output intack;

input [7:0] intvec; // interrupt jump vector

The ALU is instantiated with the configured width, and
the necessary wires are declared

〈ALU instantiation〉≡
wire ‘L res, toN;

wire carry, zero;

alu #(l) alu16(res, carry, zero,

T, N, c, inst[2:0]);

Since the stacks work in parallel, we have to calculated,
when a value is pushed onto the stack (thus only if some-
thing is stored there).

〈stack pushs〉≡
reg dpush, rpush;

always @(clk or state or inst or rd)

begin

dpush <= 1’b0;

rpush <= 1’b0;

if(state[2]) begin

dpush <= |state[1:0] & rd;

rpush <= state[1] & (inst[1:0]==2’b10);

end else

casez(inst)

5’b00001: rpush <= 1’b1;

5’b11100: rpush <= 1’b1;

5’b11?1?: dpush <= 1’b1;

endcase // case(inst)

end

The stacks don’t only consist of the two stack mod-
ules, but also need an incremented and decremented stack
pointer. The return stack even allows to write the top of
return stack even without changing the return stack depth.

〈stack instantiation〉≡
wire [sdep-1:0] spdec, spinc;

wire [rdep-1:0] rpdec, rpinc;

stack #(sdep,l) dstack(clk, sp, spdec,

dpush, N, toN);

stack #(rdep,l) rstack(clk, rp, rpdec,

rpush, toR, R);

assign spdec = sp-{{(sdep-1){1’b0}}, 1’b1};

assign spinc = sp+{{(sdep-1){1’b0}}, 1’b1};

assign rpdec = rp+{(rdep){(~state[2] | tos2r)}};

assign rpinc = rp+{{(rdep-1){1’b0}}, 1’b1};

6

b16 — A Forth Processor in an FPGA Bernd Paysan 4 THE REST OF THE IMPLEMENTATION

The basic core is the fully synchronous register update.
Each register needs a reset value, and depending on the state
transition, the corresponding assignments have to be coded.
Most of that is from above, only the instruction fetch and
the assignment of the next value of incby has to be done.

〈register updates〉≡
if(!reset) begin

〈resets〉
end else if(state[2]) begin

〈load-store〉
end else begin // if (state[2])

if(show) begin

〈debug〉
end

if(nextstate == 3’b100)

{ addr, rd } <= { P, 1’b1 };

state <= nextstate;

incby <= (inst[4:2] != 3’b101);

〈instructions〉
end // else: !if(reset)

As reset value, we initialize the CPU so that it is about
to fetch the next instruction from address 0. The stacks are
all empty, the registers contain all zeros.

〈resets〉≡
state <= 3’b100;

incby <= 1’b1;

P <= 16’h0000;

addr <= 16’h0000;

A <= 16’h0000;

T <= 16’h0000;

N <= 16’h0000;

I <= 16’h0000;

c <= 1’b0;

rd <= 1’b1;

wr <= 2’b00;

sp <= 0;

rp <= 0;

intack <= 0;

The transition to the next state (the NEXT within a bun-
dle) is done separately. That’s necessary, since the assign-
ments of the other variables are not just dependent on the
current state, but partially also on the next state (e.g. when
to fetch the next instruction word).

〈state changes〉≡
reg [2:0] nextstate;

always @(inst or state)

if(state[2]) begin

〈rw-nextstate〉
end else begin

casez(inst)

〈inst-nextstate〉
endcase // casez(inst[0:2])

end // else: !if(state[2]) end

〈rw-nextstate〉≡
nextstate <= state[1:0] + { 2’b0, |state[1:0] };

〈inst-nextstate〉≡
5’b00000: nextstate <= state[1:0] + 3’b001;

5’b00???: nextstate <= 3’b100;

5’b10???: nextstate <= { 1’b1, state[1:0] };

5’b?????: nextstate <= state[1:0] + 3’b001;

4.2 ALU

The ALU just computes the sum with possible carry-ins, the
logical operations, and a zero flag. It would be possible to
share common resources (the XORs of the full adder could
also compute the XOR operation, and the carry propagation
logic could compute OR and AND), but this optimization
is left to the synthesis tool.

〈ALU 〉≡
module alu(res, carry, zero, T, N, c, inst);

〈ALU ports〉

wire ‘L sum, logic;

wire cout;

assign { cout, sum } =

T + N + ((c | andor) & selr);

assign logic = andor ?

(selr ? (T | N) : (T & N)) :

T ^ N;

assign { carry, res } =

prop ? { cout, sum } : { c, logic };

assign zero = ~|T;

endmodule // alu

The ALU has ports T and N, carry in, and the lowest 3
bits of the instruction as input, a result, carry out, and test
for zero as output.

〈ALU ports〉≡
parameter l=16;

input ‘L T, N;

input c;

input [2:0] inst;

output ‘L res;

output carry, zero;

wire prop, andor, selr;

assign #1 { prop, andor, selr } = inst;

4.3 Stacks

The stacks are modeled as block RAM in the FPGA. There-
fore, they should have only one port, since these block
RAMs are available even in small FPGAs. In an ASIC,
this sort of stack is implemented with latches. Here it’s
possible to separate read and write port (also for FPGAs
that support dual-ported RAM), and save the multiplexer
for spset.

7

b16 — A Forth Processor in an FPGA Bernd Paysan 6 OUTLOOK

〈Stack〉≡
module stack(clk, sp, spdec, push, in, out);

parameter dep=3, l=16;

input clk, push;

input [dep-1:0] sp, spdec;

input ‘L in;

output ‘L out;

reg ‘L stackmem[0:(1<<dep)-1];

wire [dep-1:0] spset;

always @(clk or push or spset or in)

if(push & ~clk) stackmem[spset] <= #1 in;

assign spset = push ? spdec : sp;

assign #1 out = stackmem[spset];

endmodule // stack

4.4 Further Possible Optimizations

It would be possible to overlap memory accesses and oper-
ations on the stack, since there are separate pointer regis-
ters. The understandability of the code would suffer, and
the critical path would also be somewhat longer. With a
guaranteed speed increase of 25% (the cycle to fetch instruc-
tions would vanish), and a maximum acceleration by 100%
(for memory-intensive applications), this could be worth the
trouble — when there’s enough space.
If there’s lack of space, it is possible to implement most

registers as latches. Only T needs to be a real flip-flop. For
FPGAs, this is not an option, flip-flops are cheaper there.

4.5 Scaling Issues

Two approaches allow to adopt the b16 to own preferences:
word width and stack depth. The stack depth is easier. The
chosen depth of 8 is sufficient for the boot loader, but could
cause problems for more complex applications. Simpler ap-
plications however should fit with a smaller stack.
The word width can be adopted for the application, too.

A version reduced to 12 bit (and also with a modified in-
struction set) is used in a project at my employer Mikron
AG. This required to change the decoding of the instruc-
tions within the slot, and adopt the logic to step over the
first nop.
Furthermore, you can replace individual instructions. For

the 12 bit version, it was found that bit operations occur
very frequently, and byte accesses are completely irrelevant.

5 Development Environment

I could present a longer listing here, this time in Forth.
However, I’ll just describe the functions. All three programs
are put into one file, and allow interactive use of simulator
and target.

5.1 Assembler

The assembler resembles a bit Chuck Moore’s Color-
Forth. There are no colors, just normal punctation, as com-
mon in forth. The assembler after all is coded in Forth, and
therefore expects Forth tokens.
Labels are defined with : and |. The first one automati-

cally call on reference, but can be put on stack with ’. The
last one more resemble an interactive Create. Labels are
only resolved backwards. Literals must be taken from the
stack explicitely with # or #c. The assembler takes care of
the ordering within the slots. A ret is normally compiled
with a ;, preceeding calls are converted to a jmp. You can
define macros (macro: . . . end-macro).
Also the well-known control structures from Forth can be

used (must be used for forward branches). IF becomes a
jz, jnz is reached with -IF. cIF and -cIF correspond jnc

and jc. Similar prefixes are available for WHILE and UNTIL.

5.2 Downloader

A piece of block RAM in the FPGA is occupied by a
small program, the boot loader. This small program drives
the LEDs, and waits for commands from the serial line
(115.2KB-aud, 8N1, no handshake). There are three com-
mands, starting with ASCII signs:

0 addr, len, <len∗data>: Programs memory from addr
with len data bytes

1 addr, len: Reads back len bytes from memory starting at
addr

2 addr: Execute the word at addr

These three commands are sufficient to program the b16
interactively. On the host side, a few instructions are suffi-
cient, too:

comp Compile to the end of line, and send the result to
the evaluation board

eval Compile to the end of line, send the result to the eval-
uation board, call the code, and set the RAM pointer
of the assembler back to the original value

sim Same as eval, but execute the result with the simula-
tor instead of using the evaluation board

check (addr u —) Reads a memory block from the eval-
uation board, and display it with dump

6 Outlook

More material is available from my home page [2]. All
sources are available under GPL. Data for producing a
board is available, too. Hans Eckes might make one for
you, if you pay for it. And if someone wants to use the b16
commercially, talk to me.

8

b16 — A Forth Processor in an FPGA Bernd Paysan REFERENCES

References

[1] c18 ColorForth Compiler, Chuck Moore, 17th Euro-
Forth Conference Proceedings, 2001

[2] b16 Processor, Bernd Paysan, Internet Home
page, http://www.jwdt.com/ paysan/b16.html
http://www.jwdt.com/~paysan/b16.html

9

http://www.jwdt.com/~paysan/b16.html

	Architectural Overview
	Register

	Instruction Set
	Jumps
	ALU Operations
	Memory Instructions
	Stack Instructions

	Examples
	The Rest of the Implementation
	Top Level
	ALU
	Stacks
	Further Possible Optimizations
	Scaling Issues

	Development Environment
	Assembler
	Downloader

	Outlook

