
b16-small—Less is More

Bernd Paysan

July 9, 2006

Abstract

b16 is a Forth-CPU inspired by Chuck Moore’s current
work. It is intended at replacing state machines and other
more sequential logic, including calculations. When going
into the first SoC design, I shrank b16 down to what was
needed for the project, creating an off-spring called b16-
small. Surprisingly, the resulting architecture is closer to
traditional Forth than the original b16. Uncommon sense
results will include that a smaller design doesn’t have less
lines of code, that you don’t need more stack space than
4 or 5 cells, that a 2-digit 7-segment is all you need for
debugging, and that 1k of program ROM is enough.

Contents

1 Architectural Overview 1
1.1 Register . 2

2 Instruction Set 2
2.1 Jumps . 3
2.2 ALU Operations 3
2.3 Memory Instructions 4
2.4 Stack Instructions 5

3 Tradeoffs of the Shrink 5
3.1 I/O Strategy 5
3.2 The Software 6

4 The Rest of the Implementation 6
4.1 Top Level . 6
4.2 ALU . 7
4.3 Stacks . 8

Introduction

Minimalistic CPUs can be used in many designs. A state
machine often is too complicated and too difficult to de-
velop, when there are more than a few states. A program
with subroutines can perform a lot more complex tasks,
and is easier to develop at the same time. Also, ROM and
RAM blocks occupy much less place on silicon than“random
logic”. That’s also valid for FPGAs, where “block RAM”
is—in contrast to logic elements—plenty.

The architecture is inspired by the c18 from Chuck

Moore [1]. The exact instruction mix is different; it also

ALU
Stack Return−Stack

P

R

RAM/ROM

 Instruction Word

B16 small Block Diagram

Address MUX

NOS

TOS

Figure 1: b16-small Block Diagram

differs from the b16 core. I left out multiplication and divi-
sion step, but implemented Forth-typical logic operations.
Also, this architecture is byte-addressed.

A word about Verilog: Verilog is a C-like language, but
tailored for the purpose to simulate logic, and to write syn-
thesizible code. Variables are bits and bit vectors, and as-
signments are typically non-blocking, i.e. on assignments
first all right sides are computed, and the left sides are mod-
ified afterwards. Also, Verilog has events, like changing of
values or clock edges, and blocks can wait on them.

This article is an example of literate programming.
This is the actual source code. This core is li-
censed unter the GPL. For more informations, see
http://www.jwdt.com/~paysan/b16.html

1 Architectural Overview

The core components are

1

http://www.jwdt.com/~paysan/b16.html

b16-small—Less is More Bernd Paysan 2 INSTRUCTION SET

ALU

NOS

Stack Return−Stack

A

P

R

RAM/ROM

 Instruction Word Address Latch

TOS

Figure 2: b16 Block Diagram, changes crossed out

• An ALU

• A data stack with top and next of stack (T and N) as
inputs for the ALU

• A return stack

• An instruction pointer P

• An address mux addr, to address external memory

• An instruction latch I

Figure 1 shows the block diagram of b16-small.
Figure 2 shows the original block diagram, crossed out in

red what I removed or replaced. I removed the A register.
Furthermore, the R register now can’t access memory, and is
just part of the return stack SRAM block. N was a register
in the b16, now it is part of the stack RAM block. This
change is on the edge to trouble: Some FPGAs don’t have
the right asynchronous RAM needed for this. There, it
is mandatory to keep N as register. Also, automatic test
pattern generation (ATPG) is easier with N as register.

1.1 Register

In addition to the user-visible latches there are control
latches for external RAM (rd and wr), stack pointers (sp
and rp), and a carry c.

Name Function

T Top of Stack
I Instruction Bundle
P Program Counter

state Processor State
sp Stack Pointer
rp Return Stack Pointer
c Carry Flag

〈register declarations〉≡
reg [sdep-1:0] sp;

reg [rdep-1:0] rp;

reg ‘L T, I, P;

reg [1:0] state;

reg c;

2 Instruction Set

There are 32 different instructions. Since several instruc-
tions fit into a 16 bit word, we call the bits to store the
packed instructions in an instruction word “slot”, and the
instruction word itself “bundle”. The arrangement here is
1,5,5,5, i.e. the first slot is only one bit large (the more
significant bits are filled with 0), and the others all 5 bits.

The operations in one instruction word are executed one
after the other. Each instruction takes one cycle, memory
operation (including instruction fetch) need another cycle.
Which instruction is to be executed is stored in the variable
state.

The instruction set is divided into four groups: jumps,
ALU, memory, and stack. Table 1 shows an overview over
the instruction set. Note: Some special characters indicate
functions as follows: “!”: “store”, “@”: “fetch”, “>”: “to” if
before, “from” if afterwards.

Operations will be described using a “stack effect”. This
is a template for the stack elements before and after the
operation, separated by a long dash. The names are listed
in the order bottom to top, unchanged stack elements below
are not listed.

Jumps use the rest of the instruction word as target ad-
dress (except ret). The lower bits of the instruction pointer
P are replaced, there’s nothing added. For instructions in
the last slot, no address remains, so they use T (TOS) as
target.

〈instruction selection〉≡
// instruction and branch target selection

reg [4:0] inst;

reg ‘L jmp;

always @(state or I or data)

case(state[1:0])

2’b00: inst <= { 4’b0, data[15] };

2’b01: inst <= I[14:10];

2’b10: inst <= I[9:5];

2’b11: inst <= I[4:0];

endcase // casez(state)

always @(state or I or P or T or data)

case(state[1:0])

2’b00: jmp <= { data[14:0], 1’b0 };

2’b01: jmp <= { P[15:11], I[9:0], 1’b0 };

2’b10: jmp <= { P[15:6], I[4:0], 1’b0 };

2’b11: jmp <= { T[15:1], 1’b0 };

EuroForth 2004 Proceedings 2

b16-small—Less is More Bernd Paysan 2 INSTRUCTION SET

0 1 2 3 4 5 6 7 Comment
0 nop call jmp ret jz jnz jc jnc

nop exec goto ret gz gnz gc gnc for slot 3
8 xor com and or + +c 2/ c2/

10 !+ @+ @ lit c!+ c@+ c@ litc

!. @. @ lit c!. c@. c@ litc for slot 1
18 nip drop over dup >r nop r> nop

Table 1: Instruction Set

endcase // casez(state)

The instructions themselves are executed depending on
inst:

〈instructions〉≡
casez(inst)

〈control flow〉
〈ALU operations〉
〈load/store〉
〈stack operations〉

endcase // case(inst)

2.1 Jumps

In detail, jumps are performed as follows: the target address
is stored in the P register. The register P will later be set
to the incremented value of the address multiplexer addr,
after the instruction fetch cycle. Apart from call, jmp and
ret there are conditional jumps, which test for 0 and carry.
The lowest bit of the return stack is used to save the carry
flag across calls. Conditional instructions do consume their
test value, like Forth, unlike c18 or b16. This is based on an
evaluation of the preliminary application program, which
quite a lot of IF drop . . . ELSE drop.

To make it easier to understand, I also define the effect
of an instruction in a pseudo language:

nop (—)

call (— r:P) P← jmp; c← 0

jmp (—) P← jmp

ret (r:a —) P← a ∧ $FFFE; c← a ∧ 1

jz (n —) if(n = 0)P← jmp

jnz (n —) if(n 6= 0)P← jmp

jc (x —) if(c) P← jmp

jnc (x —) if(c = 0)P← jmp

〈control flow〉≡
5’b00001: begin

rp <= rpdec;

P <= jmp;

c <= 1’b0;

if(state == 2’b11) ‘DROP;

end // case: 5’b00001

5’b00010: begin

P <= jmp;

if(state == 2’b11) ‘DROP;

end

5’b00011: { rp, c, P } <=

{ rpinc, R[0], R[l-1:1], 1’b0 };

5’b001??: begin

if((inst[1] ? c : zero) ^ inst[0])

P <= jmp;

‘DROP;

end

2.2 ALU Operations

The ALU instructions use the ALU, which computes a result
res and a carry bit from T and N. The instruction com is
an exception, since it only inverts T—that doesn’t require
an ALU.

Ordinary ALU instructions just write the result of the
ALU into T and c, and reload N. The original b16 had a
double-wide multiplication and division step, which used the
A register, too. These operations don’t work without A, so I
replaced them with two different divide by two instructions,
one found in every Forth system (2/), the other intended for
double-width shifts (c2/, shifts carry in). In the application
code itself, only 2/ is used.

xor (a b — r) r ← a⊕ b

com (a — r) r ← a⊕ $FFFF, c← 1

and (a b — r) r ← a ∧ b

or (a b — r) r ← a ∨ b

+ (a b — r) c, r ← a + b

+c (a b — r) c, r ← a + b + c

2/ (a — r) r, c← r[15], r

c2/ (a — r) r, c← c, r

〈ALU operations〉≡
5’b01001: { c, T } <= { 1’b1, ~T };

5’b0111?: { T, c } <= { inst[0] ? c : T[15], T };

5’b01???: { sp, c, T } <= { spinc, carry, res };

EuroForth 2004 Proceedings 3

b16-small—Less is More Bernd Paysan 2 INSTRUCTION SET

2.3 Memory Instructions

Memory instructions use either T as address, and N as data
(source or destination), or P as address, and T as desti-
nation (literals). The address is auto-incremented, except
for instructions in the first slot which use T as address—
this is to implement read-modify-write instructions (non-
incrementing is written as @. or !. in the assembler, don’t
care as @* or !*). The traditional Forth @, which consumes
the address, is here, too. For !, this can’t work, since we
would have to drop two stack cells at once.

!+ (n A — A’) mem[A]← n; A′ ← A + 2

@+ (A — n A’) n← mem[A]; A′ ← A + 2

@ (A — n) n← mem[A];

lit (— n) n← mem[P]; P← P + 2

c!+ (c A — A’) mem.b[A]← c; A′ ← A + 1

c@+ (A — c A’) c← mem.b[A]; A′ ← A + 1

c@ (A — c) c← mem.b[A];

litc (— c) c← mem.b[P]; P← P + 1

〈address control〉≡
wire ‘L incaddr, toR, R, dataw;

wire tos2r, tos2n;

wire incby, addrsel, access, rd;

wire [1:0] wr;

assign incby = (inst[4:2] != 3’b101);

assign access = (inst[4:3]==2’b10);

assign addrsel = rd ? (access & (~&inst[1:0]))

: |wr;

assign rd = (state==2’b00) ||

(access && (|inst[1:0]));

assign wr = (access && (~|inst[1:0])) ?

{ ~inst[2] | ~T[0],

~inst[2] | T[0] } : 2’b00;

assign tos2r = (inst == 5’b11100);

assign tos2n = (!rd | (inst[1:0] == 2’b11));

〈address handling〉≡
assign addr = addrsel ? T : P;

assign incaddr =

{ addr[l-1:1] + (incby | addr[0]),

~(incby | addr[0]) };

assign toR = tos2r ? T :

{ |state ? P[15:1]

: incaddr[15:1], c });

assign toN = tos2n ? T : dataw;

assign dataw = incby ? data :

{ 8’h00, addr[0] ? data[7:0]

: data[l-1:8] };

assign dataout = { incby ? N[15:8]

: N[7:0], N[7:0] };

Memory access can’t just be done word wise, but also
byte wise. Therefore two write lines exist. For byte wise
store the lower byte of N is also put on the higher byte bus
part. Byte accesses are quite useful, since most controlled
values (like DACs and ADCs) have at most 8 bits.

〈load/store〉≡
5’b10?0?: begin

if(nextstate != 2’b10) T <= incaddr;

sp <= rd ? spdec : spinc;

end

5’b10?1?: T <= dataw;

In the original b16, memory accesses needed a separate
cycle. It turned out that this was a waste of cycles, which
is only reasonable if the memory is slower than the clock.
And in this case, you better insert a wait state. Here the
result of the memory access is handled:

〈load-store〉≡
〈pointer increment〉
if(|state[1:0]) begin

〈store afterwork〉
end else begin

〈ifetch〉
end

〈debug〉≡
$write("%b[%b] T=%b%x:%x[%x], ",

inst, state, c, T, N, sp);

$write("P=%x, I=%x, R=%x[%x], res=%b%x\n",

P, I, R, rp, carry, res);

After the access is completed, the result for a load has to
be pushed on the stack, or into the instruction register; for
stores, the N is to be dropped.

〈store afterwork〉≡
if(rd && { inst[4:3], inst[1:0] } != 4’b1010)

sp <= spdec;

if(|wr) sp <= spinc;

Furthermore, the incremented address may go back to the
pointer.

〈pointer increment〉≡
if(~|state[1:0] ||

((inst[4:3] == 2’b10) && (&inst[1:0])))

P <= incaddr;

To shortcut a nop in the first instruction, there’s some
special logic. That’s the second part of NEXT.

〈ifetch〉≡
I <= data;

if(!data[15]) state[1:0] <= 2’b01;

EuroForth 2004 Proceedings 4

b16-small—Less is More Bernd Paysan 3 TRADEOFFS OF THE SHRINK

2.4 Stack Instructions

Stack instructions change the stack pointer and move values
into and out of latches. With the 8 used stack operations,
one notes that swap is missing. Instead, there’s nip. The
reason is a possible implementation option: it’s possible to
omit N as register, and fetch this value directly out of the
stack RAM. This consumes more time, but saves space. We
actually have two unused instruction slots, so implementing
N as register could give us swap and we could also have r@1.

nip (a b — b)

drop (a —)

over (a b — a b a)

dup (a — a a)

>r (a — r:a)

r> (r:a — a)

〈stack operations〉≡
5’b11000: sp <= spinc;

5’b11001: ‘DROP;

5’b11010: { sp, T } <= { spdec, N };

5’b11011: sp <= spdec;

5’b11100: begin

rp <= rpdec; ‘DROP;

end // case: 5’b11100

5’b11110: begin

{ sp, T } <= { spdec, R };

rp <= rpinc;

end // case: 5’b11110

3 Tradeoffs of the Shrink

Ruthless redesign is what Forthers are used to do. What
did we learn from this shrink?

1. It’s smaller. The logic element that costs most area is
the flip-flop. Ruthlessly eliminating flip-flops is a good
strategy to make hardware small. The original b16 has
6 16 bit registers which have to be implemented as flip-
flops: T, N, R, P, A, and I. Strictly speaking, the ad-
dress latch belongs to this set, but it was a design mis-
take that can be removed without further effect. Now
we have only three 16 bit registers which absolutely
have to be flip-flops: T, I, and P. As I said, it would
be nice to have N as flip-flop, too, so we really are on
the edge. We also have fewer logic paths, mostly due
to A going away, and some instructions less. We have
have of the stack size. Overall, the reduction in size is
almost 50%.

1It would be more consistent to name this word R, but normal Forth

convention is r@.

2. It’s slower. That’s due to two reasons. First, with N
being part of the stack SRAM block, all ALU opera-
tions have the SRAM in their critical path. Second,
with memory accesses taking only one cycle, they are
also in the critical path. READY provides a wait state
logic here, so it’s not that awful.

3. It’s closer to Forth:

(a) Chuck’s ideas with additional pointer registers
(A and R) look nice at first sight, but turned out
to be not very useful in this project. Controlling
often means just storing values to memory loca-
tions (memory mapped IO), and it’s difficult to get
these memory locations into an order where you
can make use of auto-increment. The traditional
Forth @ and c@—which consume their address—do
the job in one instruction, where the A-based ad-
dressing would need two. And with @+/!+, auto-
increment still is there when you need it.

(b) The control flow is also closer to Forth, where IF
consumes the flag.

3.1 I/O Strategy

Real controller hardware needs I/Os and other special func-
tions. Most of the I/O here were registers that control ana-
log components. To the digital side, these registers look
like memory, and therefore don’t need special care. The re-
maining special functions are a timer, and a power control
register. The timer is a simple one-shot timer that incre-
ments a 16 bit number until it overflows. The power control
register replaces interrupt handling. It contains four bits for
different external events:

1. Reset—a hardware reset woke up the CPU.

2. Timer—a timer event woke up the CPU.

3. Communication—a write into RAM via the external
serial interface woke up the CPU.

4. Analog event—a periodic event from the analog side
woke up the CPU

Simply looking at these four bits allows to dispatch events.
I use four IFs to check for the events, since using a branch
table would waste more space. The application priorize
events, so you know what to do first, anyway.

Unlike a real interrupt, no stack space is needed—the
event loop is the main loop, anyway. There’s no background
task to do here, so interrupts don’t make sense. If the CPU
clears all run bits in the power control register, operation
stops, until another event arrives. To prevent race condi-
tions with other events, the power control register has a
special write mode, where specified bits are cleared, and
other bits remain as they were. A read-modify-write access
to this register would take several cycles, and could lead to
clearing a bit that was set in the time between read and
write.

EuroForth 2004 Proceedings 5

b16-small—Less is More Bernd Paysan 4 THE REST OF THE IMPLEMENTATION

3.2 The Software

Initially, the customer didn’t know what he wanted. That’s
a very common behavior. Not being a programmer, he tried
to express the logic as “state machine”. It turned out that
this wasn’t what he wanted. That was anyway the main
reason to use a CPU: to implement the logic in software
was anticipating the customer’s uncertainty.

The program can be divided into two parts: initialization,
and event loop. The event loop is a combination of the orig-
inally state machine, all the possible exceptions that could
happen, but weren’t foreseen, and asynchronous events that
need constant reaction no matter what the current state is.

The customer’s uncertainty resulted in two things: fre-
quent rewrites (which didn’t take much longer than to un-
derstand what the customer wanted now), and more uncer-
tainty on the customer side. The whole logic was proto-
typed in an FPGA, so the customer could see the behavior.
What he didn’t see was the state machine diagram, and
he couldn’t find the logic in the code. That’s because the
original logic wasn’t in the code, and couldn’t.

The interesting thing was that the program stayed a small
bit below 1k all the time. I had foreseen 1k ROM at the
project start, but that wasn’t a fixed value. The size of
the ROM wasn’t needed until the software was completely
frozen, and the ROM mask was ordered. However, it did
work out.

Subroutines are a natural way to save space. Another
one is when you have constant arguments a lot, e.g. for the
timeout setting. I wrote a timeout word, which takes the
next word in the instruction stream as data:

: TIMER! (--) r> @+ >r TIMER # ! ;

The thing to struggle most with was the stack depth. I’ve
stripped down the stack to 5 elements (TOS plus four), and
the return stack to 4 elements. The limiting word was the
3 out of 4 redundancy calculation. It took all the stack,
and but one of the return stack elements (and like above, it
takes inline arguments):

: 3of4 (#:addr,addr --)

r> @+ >r

@+ @+ @+ @+ >r xor >r xor r> and

r> -6 # + @+ @+ @+ >r xor swap

r> -8 # + @. >r xor and or

r> @+ @+ >r over xor dup >r com and

r> r> @ and or swap ?err

r> @+ >r ! ;

4 The Rest of the Implementation

First the implementation file with comment and modules.

〈b16.v〉≡
/*

* b16 core: 16 bits,

* inspired by c18 core from Chuck Moore

*

〈inst-comment〉
*/

‘define L [l-1:0]

‘define DROP { sp, T } <= { spinc, N }

‘timescale 1ns / 1ns

〈ALU 〉
〈Stack〉
〈cpu〉

〈inst-comment〉≡
* Instruction set:

* 1, 5, 5, 5 bits

* 0 1 2 3 4 5 6 7

* 0: nop call jmp ret jz jnz jc jnc

* /3 exec goto ret gz gnz gc gnc

* 8: xor com and or + +c u2/ c2/

* 10: !+ @+ @ lit c!+ c@+ c@ litc

* /1 !. @. @ lit c!. c@. c@ litc

* 18: nip drop over dup >r r>

4.1 Top Level

The CPU consists of several parts, which are all imple-
mented in the same Verilog module.

〈cpu〉≡
module cpu(clk, run, reset, addr, rd, wr,

data, dataout, READY);

〈port declarations〉
〈register declarations〉
〈instruction selection〉
〈ALU instantiation〉
〈address control〉
〈address handling〉
〈stack pushs〉
〈stack instantiation〉
〈state changes〉

always @(posedge clk or negedge reset)

〈register updates〉

endmodule // cpu

First, Verilog needs port declarations, so that it can now
what’s input and output. The parameter are used to con-
figure other word sizes and stack depths.

〈port declarations〉≡
parameter show=0, l=16, sdep=2, rdep=2;

input clk, run, reset, READY;

output ‘L addr;

output rd;

output [1:0] wr;

input ‘L data;

output ‘L dataout;

EuroForth 2004 Proceedings 6

b16-small—Less is More Bernd Paysan 4 THE REST OF THE IMPLEMENTATION

The ALU is instantiated with the configured width, and
the necessary wires are declared

〈ALU instantiation〉≡
wire ‘L res, toN, N;

wire carry, zero;

alu #(l) alu16(res, carry, zero,

T, N, c, inst[2:0]);

Since the stacks work in parallel, we have to calculated,
when a value is pushed onto the stack (thus only if some-
thing is stored there).

〈stack pushs〉≡
reg dpush, rpush;

always @(state or inst or rd or READY)

begin

rpush <= 1’b0;

dpush <= |state[1:0] & rd;

casez(inst)

5’b00001: rpush <= |state[1:0] | READY;

5’b11100: rpush <= 1’b1;

5’b11?1?: dpush <= 1’b1;

endcase // case(inst)

end

The stacks don’t only consist of the two stack mod-
ules, but also need an incremented and decremented stack
pointer. The return stack even allows to write the top of
return stack even without changing the return stack depth.

〈stack instantiation〉≡
wire [sdep-1:0] spdec, spinc;

wire [rdep-1:0] rpdec, rpinc;

stack #(sdep,l) dstack(clk, sp, spdec,

dpush, toN, N);

stack #(rdep,l) rstack(clk, rp, rpdec,

rpush, toR, R);

assign spdec = sp-{{(sdep-1){1’b0}}, 1’b1};

assign spinc = sp+{{(sdep-1){1’b0}}, 1’b1};

assign rpdec = rp-{{(rdep-1){1’b0}}, 1’b1};

assign rpinc = rp+{{(rdep-1){1’b0}}, 1’b1};

The basic core is the fully synchronous register update.
Each register needs a reset value, and depending on the state
transition, the corresponding assignments have to be coded.
Most of that is from above, only the instruction fetch and
the assignment of the next value of incby has to be done.

〈register updates〉≡
if(!reset) begin

〈resets〉
end else if(run) begin

if(show) begin

〈debug〉
end

〈load-store〉

state <= nextstate;

〈instructions〉
end // else: !if(reset)

As reset value, we initialize the CPU so that it is about
to fetch the next instruction from address 0. The stacks are
all empty, the registers contain all zeros.

〈resets〉≡
state <= 2’b11;

P <= 16’h07FE;

T <= 16’h0000;

I <= 16’h0000;

c <= 1’b0;

sp <= 0;

rp <= 0;

The transition to the next state (the NEXT within a bun-
dle) is done separately. That’s necessary, since the assign-
ments of the other variables are not just dependent on the
current state, but partially also on the next state (e.g. when
to fetch the next instruction word).

〈state changes〉≡
reg [1:0] nextstate;

always @(inst or state)

casez(inst)

〈inst-nextstate〉
endcase // casez(inst[0:2])

〈inst-nextstate〉≡
5’b00000: nextstate <= state[1:0] + 2’b01;

5’b00???: nextstate <= 2’b00;

5’b?????: nextstate <= state[1:0] + 2’b01;

4.2 ALU

The ALU just computes the sum with possible carry-ins, the
logical operations, and a zero flag. It would be possible to
share common resources (the XORs of the full adder could
also compute the XOR operation, and the carry propagation
logic could compute OR and AND), but this optimization
is left to the synthesis tool.

〈ALU 〉≡
module alu(res, carry, zero, T, N, c, inst);

〈ALU ports〉

wire ‘L r1, r2;

wire [l:0] carries;

assign #1 r1 = T ^ N ^ carries;

assign #1 r2 = (T & N) |

(T & carries‘L) |

(N & carries‘L);

assign #1 carries =

prop ? { r2[l-1:0], (c | selr) & andor }

: { c, {(l){andor}}};

EuroForth 2004 Proceedings 7

b16-small—Less is More Bernd Paysan REFERENCES

assign #1 res = (selr & ~prop) ? r2 : r1;

assign #1 carry = carries[l];

assign #1 zero = ~|T;

endmodule // alu

The ALU has ports T and N, carry in, and the lowest 3
bits of the instruction as input, a result, carry out, and test
for zero as output.

〈ALU ports〉≡
parameter l=16;

input ‘L T, N;

input c;

input [2:0] inst;

output ‘L res;

output carry, zero;

wire prop, andor, selr;

assign #1 { prop, selr, andor } = inst;

4.3 Stacks

The stacks are modeled as block RAM in the FPGA. There-
fore, they should have only one port, since these block
RAMs are available even in small FPGAs. In an ASIC,
this sort of stack is implemented with latches. Here it’s
possible to separate read and write port (also for FPGAs
that support dual-ported RAM), and save the multiplexer
for spset.

〈Stack〉≡
module stack(clk, sp, spdec, push, in, out);

parameter dep=2, l=16;

input clk, push;

input [dep-1:0] sp, spdec;

input ‘L in;

output ‘L out;

‘ifdef SYNCSTACK

// on FPGAs, SYNCSTACK is preferred

reg ‘L stackmem[0:(1<<dep)-1];

always @(posedge clk)

if(push)

stackmem[spdec] <= in;

assign out = stackmen[sp];

‘else

wire [dep-1:0] #1 spset = spdec;

wire #1 write = push & ~clk;

wire ‘L #1 ind = in;

reg ‘L stackmem[0:(1<<dep)-1];

always @(write or spset or ind)

if(write) stackmem[spset] <= ind;

assign #1 out = stackmem[sp];

‘endif

endmodule // stack

References

[1] c18 ColorForth Compiler, Chuck Moore, 17th Euro-
Forth Conference Proceedings, 2001

EuroForth 2004 Proceedings 8

	Architectural Overview
	Register

	Instruction Set
	Jumps
	ALU Operations
	Memory Instructions
	Stack Instructions

	Tradeoffs of the Shrink
	I/O Strategy
	The Software

	The Rest of the Implementation
	Top Level
	ALU
	Stacks

